BDTNet: Road Extraction by Bi-Direction Transformer From Remote Sensing Images

计算机科学 特征提取 人工智能 编码器 分割 变压器 卷积神经网络 骨干网 模式识别(心理学) 图像分割 特征(语言学) 计算机视觉 数据挖掘 遥感 电压 工程类 操作系统 电气工程 地质学 哲学 语言学 计算机网络
作者
Lin Luo,Jiaxin Wang,Si-Bao Chen,Jin Tang,Bin Luo
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:19: 1-5 被引量:17
标识
DOI:10.1109/lgrs.2022.3183828
摘要

The past several years have witnessed the rapid development of the task of road extraction in high-resolution remote sensing images. However, due to the complex background and road distribution, road extraction is still a challenging research in remote sensing images. In convolutional neural networks (CNNs), the U-shaped architecture network has shown its effectiveness. But the global representation cannot be captured effectively by CNNs. While in the transformer, the self-attention (SA) module can capture the long-distance feature dependencies. A hybrid encoder-decoder method called BDTNet is proposed in this letter, which enhance the extraction of global and local information in remote sensing images. Firstly, feature maps of different scales are obtained through the backbone network. And then, on the basis of reducing the computational cost of self-attention, the Bi-Direction Transformer Module (BDTM) is constructed to capture the contextual road information in feature maps of different scales. Finally, the Feature Refinement Module (FRM) is introduced to integrate the features extracted from the backbone network and BDTM, which enhances the semantic information of the feature maps and obtains more detailed segmentation results. The results show that the proposed method achieved a high IoU of 67.09% in the DeepGlobe dataset. Extensive experiments also verify the effectiveness of the proposed method on three public remote sensing road datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
默默无闻的打工仔完成签到,获得积分10
刚刚
vivid完成签到,获得积分10
刚刚
等风的人发布了新的文献求助10
1秒前
su完成签到,获得积分10
1秒前
1秒前
Dr完成签到,获得积分20
2秒前
2秒前
npknpk完成签到,获得积分20
2秒前
理理丽丽完成签到,获得积分10
2秒前
YQF完成签到,获得积分10
2秒前
小贝壳要快乐吖完成签到,获得积分10
2秒前
zxcvbnm完成签到 ,获得积分10
3秒前
3秒前
David完成签到,获得积分10
3秒前
酷炫的大碗完成签到,获得积分10
3秒前
忧郁觅柔完成签到,获得积分10
3秒前
惠飞薇发布了新的文献求助10
4秒前
锅包肉完成签到 ,获得积分10
4秒前
阿蒙完成签到,获得积分10
5秒前
大魁完成签到,获得积分10
5秒前
5秒前
李爱国应助accpeted采纳,获得10
5秒前
Adi完成签到,获得积分10
6秒前
1111发布了新的文献求助10
6秒前
启程牛牛完成签到,获得积分10
7秒前
科研通AI2S应助叉叉茶采纳,获得10
7秒前
理理丽丽发布了新的文献求助10
7秒前
Amy完成签到,获得积分10
7秒前
quanwangertaiyu完成签到,获得积分10
7秒前
海蓝鲸完成签到 ,获得积分10
8秒前
8秒前
大爱仙尊完成签到,获得积分10
8秒前
笨笨发布了新的文献求助10
8秒前
8秒前
缥缈的飞扬完成签到,获得积分10
8秒前
cbf完成签到,获得积分10
9秒前
追寻冰淇淋应助LKT采纳,获得30
9秒前
ty发布了新的文献求助10
9秒前
Efei完成签到,获得积分10
11秒前
Plateau发布了新的文献求助10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957265
求助须知:如何正确求助?哪些是违规求助? 3503314
关于积分的说明 11112746
捐赠科研通 3234499
什么是DOI,文献DOI怎么找? 1787911
邀请新用户注册赠送积分活动 870830
科研通“疑难数据库(出版商)”最低求助积分说明 802330