BDTNet: Road Extraction by Bi-Direction Transformer From Remote Sensing Images

计算机科学 特征提取 人工智能 编码器 分割 变压器 卷积神经网络 骨干网 模式识别(心理学) 图像分割 特征(语言学) 计算机视觉 数据挖掘 遥感 电压 工程类 操作系统 电气工程 地质学 哲学 语言学 计算机网络
作者
Lin Luo,Jiaxin Wang,Si-Bao Chen,Jin Tang,Bin Luo
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:19: 1-5 被引量:27
标识
DOI:10.1109/lgrs.2022.3183828
摘要

The past several years have witnessed the rapid development of the task of road extraction in high-resolution remote sensing images. However, due to the complex background and road distribution, road extraction is still a challenging research in remote sensing images. In convolutional neural networks (CNNs), the U-shaped architecture network has shown its effectiveness. But the global representation cannot be captured effectively by CNNs. While in the transformer, the self-attention (SA) module can capture the long-distance feature dependencies. A hybrid encoder-decoder method called BDTNet is proposed in this letter, which enhance the extraction of global and local information in remote sensing images. Firstly, feature maps of different scales are obtained through the backbone network. And then, on the basis of reducing the computational cost of self-attention, the Bi-Direction Transformer Module (BDTM) is constructed to capture the contextual road information in feature maps of different scales. Finally, the Feature Refinement Module (FRM) is introduced to integrate the features extracted from the backbone network and BDTM, which enhances the semantic information of the feature maps and obtains more detailed segmentation results. The results show that the proposed method achieved a high IoU of 67.09% in the DeepGlobe dataset. Extensive experiments also verify the effectiveness of the proposed method on three public remote sensing road datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cyy发布了新的文献求助10
1秒前
zxy发布了新的文献求助30
2秒前
3秒前
treasure完成签到,获得积分20
3秒前
3秒前
cici完成签到,获得积分20
3秒前
4秒前
小飞侠发布了新的文献求助20
4秒前
tRNA完成签到,获得积分10
5秒前
赘婿应助遥远的猫采纳,获得10
6秒前
yu202408应助文文采纳,获得20
6秒前
Colo发布了新的文献求助10
7秒前
大胆仰完成签到,获得积分10
7秒前
9秒前
袁指导发布了新的文献求助10
10秒前
12秒前
淡淡宇宇宝宝完成签到,获得积分10
12秒前
14秒前
redz33完成签到,获得积分10
14秒前
14秒前
15秒前
16秒前
changping应助leslieo3o采纳,获得10
18秒前
Parsec完成签到 ,获得积分10
18秒前
饶渔发布了新的文献求助10
18秒前
20秒前
20秒前
Adios发布了新的文献求助30
20秒前
共享精神应助嘛籽m采纳,获得10
21秒前
Erica完成签到,获得积分10
22秒前
wobisheng发布了新的文献求助10
22秒前
22秒前
看不懂完成签到 ,获得积分10
24秒前
25秒前
ZS发布了新的文献求助30
26秒前
充电宝应助贤惠的碧空采纳,获得10
29秒前
小飞侠完成签到,获得积分10
30秒前
悄悄是心上的肖肖完成签到 ,获得积分10
32秒前
Double_N完成签到,获得积分10
32秒前
传奇3应助lili采纳,获得10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295760
求助须知:如何正确求助?哪些是违规求助? 4445117
关于积分的说明 13835465
捐赠科研通 4329601
什么是DOI,文献DOI怎么找? 2376742
邀请新用户注册赠送积分活动 1372009
关于科研通互助平台的介绍 1337360