计算机科学
特征提取
人工智能
编码器
分割
变压器
卷积神经网络
骨干网
模式识别(心理学)
图像分割
特征(语言学)
计算机视觉
数据挖掘
遥感
电压
工程类
操作系统
电气工程
地质学
哲学
语言学
计算机网络
作者
Lin Luo,Jiaxin Wang,Si-Bao Chen,Jin Tang,Bin Luo
出处
期刊:IEEE Geoscience and Remote Sensing Letters
[Institute of Electrical and Electronics Engineers]
日期:2022-01-01
卷期号:19: 1-5
被引量:17
标识
DOI:10.1109/lgrs.2022.3183828
摘要
The past several years have witnessed the rapid development of the task of road extraction in high-resolution remote sensing images. However, due to the complex background and road distribution, road extraction is still a challenging research in remote sensing images. In convolutional neural networks (CNNs), the U-shaped architecture network has shown its effectiveness. But the global representation cannot be captured effectively by CNNs. While in the transformer, the self-attention (SA) module can capture the long-distance feature dependencies. A hybrid encoder-decoder method called BDTNet is proposed in this letter, which enhance the extraction of global and local information in remote sensing images. Firstly, feature maps of different scales are obtained through the backbone network. And then, on the basis of reducing the computational cost of self-attention, the Bi-Direction Transformer Module (BDTM) is constructed to capture the contextual road information in feature maps of different scales. Finally, the Feature Refinement Module (FRM) is introduced to integrate the features extracted from the backbone network and BDTM, which enhances the semantic information of the feature maps and obtains more detailed segmentation results. The results show that the proposed method achieved a high IoU of 67.09% in the DeepGlobe dataset. Extensive experiments also verify the effectiveness of the proposed method on three public remote sensing road datasets.
科研通智能强力驱动
Strongly Powered by AbleSci AI