Cloud Removal in Optical Remote Sensing Imagery Using Multiscale Distortion-Aware Networks

云计算 失真(音乐) 计算机科学 多光谱图像 人工智能 遥感 深度学习 计算机视觉 电信 地质学 带宽(计算) 操作系统 放大器
作者
Weikang Yu,Xiaokang Zhang,Man-On Pun
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:19: 1-5 被引量:17
标识
DOI:10.1109/lgrs.2022.3144686
摘要

Cloud layer contamination is a common problem in optical remote sensing (RS) images. Deep-learning-based cloud removal from RS imagery has attracted increasing attention in recent years. However, it remains challenging to exploit useful multiscale cloud-aware representations from cloud imagery due to the lack of effective modeling of cloud distortion effects and the weak feature representation capabilities of networks. To circumvent these challenges, we propose a multiscale distortion-aware cloud removal (MSDA-CR) network consisting of multiple cloud-distortion-aware representation learning (CDARL) modules combined in a multiscale grid architecture. Specifically, cloud distortion control functions (CDCFs) are defined and incorporated into the CDARL modules to adaptively model the distortion effects induced by cloud interference in the imaging process, with learnable parameters for the exploitation of distortion-restored representations. These representations are further distilled across different scales in the MSDA-CR network and integrated based on an attention mechanism to restore cloud-free images while retaining the spatial structures of ground objects. Extensive experiments on visible and multispectral RS datasets confirm the effectiveness of the proposed MSDA-CR network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JKIKU发布了新的文献求助10
1秒前
1秒前
2秒前
xiaoguoxiaoguo完成签到,获得积分10
2秒前
LeiWeI完成签到,获得积分20
2秒前
dou发布了新的文献求助10
2秒前
厉害了发布了新的文献求助10
3秒前
Hello应助kento采纳,获得200
3秒前
Orange应助凌乱采纳,获得10
4秒前
黄臻发布了新的文献求助10
6秒前
专注的兰完成签到 ,获得积分10
6秒前
7秒前
LeiWeI发布了新的文献求助10
7秒前
lili888发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
9秒前
港港完成签到 ,获得积分10
11秒前
11秒前
11秒前
12秒前
changping应助YY采纳,获得10
12秒前
科研通AI2S应助洁净的曼岚采纳,获得10
12秒前
12秒前
14秒前
14秒前
15秒前
小涂同学发布了新的文献求助10
16秒前
优pp发布了新的文献求助10
16秒前
haHAHAHA完成签到,获得积分10
18秒前
柏觅夏关注了科研通微信公众号
18秒前
凌乱发布了新的文献求助10
18秒前
YXHCM完成签到,获得积分10
19秒前
19秒前
NexusExplorer应助xcccc采纳,获得10
19秒前
19秒前
20秒前
独特的鹅完成签到,获得积分10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5062734
求助须知:如何正确求助?哪些是违规求助? 4286445
关于积分的说明 13357088
捐赠科研通 4104266
什么是DOI,文献DOI怎么找? 2247395
邀请新用户注册赠送积分活动 1252983
关于科研通互助平台的介绍 1183935