清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep Learning-enabled Detection of Acute Ischemic Stroke using Brain Computed Tomography Images

计算机科学 冲程(发动机) 人工智能 过度拟合 深度学习 分割 脑组织 神经影像学 医学 卷积神经网络 模式识别(心理学) 放射科 人工神经网络 生物医学工程 机械工程 精神科 工程类
作者
Khalid Babutain,Muhammad Hussain,Hatim Aboalsamh,Majed Alhameed
出处
期刊:International Journal of Advanced Computer Science and Applications [Science and Information Organization]
卷期号:12 (12) 被引量:5
标识
DOI:10.14569/ijacsa.2021.0121252
摘要

Stroke is the second leading cause of death globally. Computed Tomography plays a significant role in the initial diagnosis of suspected stroke patients. Currently, stroke is subjectively interpreted on CT scans by domain experts, and significant inter- and intra-observer variation has been documented. Several methods have been proposed to detect ischemic brain stroke automatically on CT scans using machine learning and deep learning, but they are not robust and their performance is not ready for clinical practice. We propose a fully automatic method for acute ischemic stroke detection on brain CT scans. The system's first component is a brain slice classification module that eliminates the CT scan's upper and lower slices, which do not usually include brain tissue. In turn, a brain tissue segmentation module segments brain tissue from CT slices, followed by tissue contrast enhancement using the Extreme-Level Eliminating Histogram Equalization technique. Finally, the processed brain tissue is classified as either normal or ischemic stroke using a classification module, to determine whether the patient is suffering from an ischemic stroke. We leveraged the use of the pre-trained ResNet50 model for slice classification and tissue segmentation, while we propose an efficient lightweight multi-scale CNN model (5S-CNN), which outperformed state-of-the-art models for brain tissue classification. Evaluation included the use of more than 130 patient brain CT scans curated from King Fahad Medical City (KFMC). The proposed method, using 5-fold cross-validation to validate generalization and susceptibility to overfitting, achieved accuracies of 99.21% in brain slice classification, 99.70% in brain tissue segmentation, ‎87.20% in patient-wise brain tissue classification, and 90.51% in slice-wise brain tissue classification. The system can assist both expert and non-expert radiologists in the early identification of ischemic stroke on brain CT scans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
房天川完成签到 ,获得积分10
43秒前
Oatmeal5888完成签到,获得积分10
49秒前
foyefeng完成签到 ,获得积分10
51秒前
kkkkfox完成签到,获得积分10
1分钟前
1分钟前
1分钟前
pcr163应助科研通管家采纳,获得100
1分钟前
大个应助暴走大菠萝采纳,获得10
1分钟前
1分钟前
1分钟前
大乐完成签到 ,获得积分10
1分钟前
ww完成签到,获得积分10
1分钟前
2分钟前
Gary完成签到 ,获得积分10
2分钟前
卜天亦发布了新的文献求助10
2分钟前
back you up完成签到,获得积分10
2分钟前
3分钟前
Shirley发布了新的文献求助10
3分钟前
3分钟前
3分钟前
852应助Airblowing采纳,获得10
3分钟前
bc应助cadcae采纳,获得30
3分钟前
科研通AI2S应助暴走大菠萝采纳,获得10
3分钟前
依然灬聆听完成签到,获得积分10
3分钟前
3分钟前
3分钟前
英俊的铭应助暴走大菠萝采纳,获得10
3分钟前
3分钟前
4分钟前
Airblowing发布了新的文献求助10
4分钟前
4分钟前
zzhui完成签到,获得积分10
4分钟前
研友_nxw2xL完成签到,获得积分10
5分钟前
muriel完成签到,获得积分10
5分钟前
5分钟前
5分钟前
卜天亦完成签到,获得积分10
5分钟前
Kevin完成签到,获得积分10
6分钟前
7分钟前
7分钟前
高分求助中
The Foraging Behavior of the Honey Bee (Apis mellifera, L.) 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Comprehensive Supramolecular Chemistry II 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Avialinguistics:The Study of Language for Aviation Purposes 270
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3681705
求助须知:如何正确求助?哪些是违规求助? 3233556
关于积分的说明 9809089
捐赠科研通 2945046
什么是DOI,文献DOI怎么找? 1615084
邀请新用户注册赠送积分活动 762505
科研通“疑难数据库(出版商)”最低求助积分说明 737467