尼泊金甲酯
光催化
化学
尼泊金丙酯
蒸馏水
降级(电信)
核化学
环境化学
色谱法
有机化学
催化作用
防腐剂
计算机科学
电信
作者
Manuel Peñas-Garzón,Maria J. Sampaio,Yilan L. Wang,Jorge Bedia,Juan J. Rodrı́guez,Carolina Belver,Cláudia G. Silva,Joaquim L. Faria
标识
DOI:10.1016/j.seppur.2022.120467
摘要
The photocatalytic degradation of methylparaben was investigated under simulated solar light using a synthesised metal–organic framework (UiO-66-NH2). For that purpose, the pollutant was spiked in different water matrices: distilled water, water from Lima River (Northwestern Portugal), and urban wastewater. Complete removal of the methylparaben in distilled water was achieved in 1 h reaction. In natural water matrices, the photocatalytic performance decreased to 70% removal after 3 h reaction, owing to the physical–chemical properties of the water samples. The UiO-66-NH2 photocatalyst revealed high stability under the continuous mode, reaching a steady state in 5 h, from which the removal percentage was kept constant for 25 h. The photocatalytic degradation of methylparaben gave five main reaction byproducts and four short-chain carboxylic acids, identified by LC/ESI-MS and UHPLC analyses, respectively. The mechanism of degradation was investigated by using selective scavengers. Photogenerated holes and superoxide radicals were found as the main species responsible for the degradation of methylparaben. The abatement of other parabens (as ethyl- and propylparaben) was also evaluated, being the conversion influenced by the length of the alkyl side chain. The results of this study give a comprehensive sight into the effective photocatalytic remediation of parabens using UiO-66-NH2.
科研通智能强力驱动
Strongly Powered by AbleSci AI