Graph-in-Graph Convolutional Network for Ultrasonic Guided Wave-Based Damage Detection and Localization

超声波传感器 图形 计算机科学 声学 理论计算机科学 物理
作者
Wang Sheng,Zhitao Luo,Peng Shen,Hui Zhang,Zhonghua Ni
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-11 被引量:14
标识
DOI:10.1109/tim.2022.3144732
摘要

Interpretation of guided wave signals is a central challenge for ultrasonic guided wave-based damage detection and localization technology. Because of the complexity of the guided waves that are scattered from structural damage, existing guided wave-based damage detection methods cannot be used to extract the relationship information hidden in the guided waves for use in damage detection and localization. A graph-in-graph convolutional network is thus proposed for guided wave-based damage detection and localization that constructs spatial–temporal feature representations of the guided wave signals and interconnects them into a global graph to indicate the inherent differences among these signals. By converting the guided wave characteristics into structural and topological information in non-Euclidean space, the proposed method correlates the global graph with the damage location directly and achieves greater damage detection accuracy with fewer training data. Validations are performed using two different experimental datasets, which were collected from aluminum plates and a composite laminate. The results indicate that the proposed method achieves superior performance with high accuracy and stability for even limited and imbalanced datasets acquired with only three transducers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
hql_sdu完成签到,获得积分10
2秒前
诚心的曼荷完成签到,获得积分10
2秒前
小张发布了新的文献求助10
2秒前
3秒前
青春完成签到 ,获得积分10
3秒前
ww发布了新的文献求助10
4秒前
Ling完成签到,获得积分10
4秒前
MaZ发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
纯情的碧玉完成签到,获得积分10
7秒前
张同学完成签到,获得积分10
8秒前
judy发布了新的文献求助10
8秒前
9秒前
聪慧芷巧发布了新的文献求助10
9秒前
务实飞荷发布了新的文献求助30
10秒前
李玲玲完成签到,获得积分20
11秒前
Owen应助ww采纳,获得10
12秒前
seven完成签到,获得积分10
12秒前
MaZ完成签到,获得积分10
13秒前
欣慰妙海发布了新的文献求助10
13秒前
YaHaa发布了新的文献求助10
15秒前
所所应助认真谷雪采纳,获得10
17秒前
东风完成签到,获得积分10
18秒前
20秒前
Jasper应助Vera采纳,获得10
21秒前
单纯龙猫完成签到,获得积分10
23秒前
23秒前
Binbin发布了新的文献求助10
24秒前
27秒前
单纯龙猫发布了新的文献求助10
27秒前
27秒前
炒菜不加氯化钠关注了科研通微信公众号
27秒前
28秒前
佳佳应助nadeem采纳,获得10
28秒前
30秒前
合适含蕾发布了新的文献求助10
30秒前
风清扬应助含着它采纳,获得10
31秒前
完美世界应助Binbin采纳,获得10
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956069
求助须知:如何正确求助?哪些是违规求助? 3502276
关于积分的说明 11107074
捐赠科研通 3232847
什么是DOI,文献DOI怎么找? 1787081
邀请新用户注册赠送积分活动 870396
科研通“疑难数据库(出版商)”最低求助积分说明 802019