人类多任务处理
多目标优化
计算机科学
进化算法
帕累托原理
进化计算
数学优化
遗传算法
最优化问题
利用
人工智能
机器学习
算法
数学
计算机安全
心理学
认知心理学
作者
Eneko Osaba,Javier Del Ser,Aritz D. Martinez,Jesús L. Lobo,Antonio J. Nebro,Xin‐She Yang
标识
DOI:10.1109/ssci50451.2021.9660024
摘要
Multiobjetive optimization has gained a considerable momentum in the evolutionary computation scientific community. Methods coming from evolutionary computation have shown a remarkable performance for solving this kind of optimization problems thanks to their implicit parallelism and the simultaneous convergence towards the Pareto front. In any case, the resolution of multiobjective optimization problems (MOPs) from the perspective of multitasking optimization remains almost unexplored. Multitasking is an incipient research stream which explores how multiple optimization problems can be simultaneously addressed by performing a single search process. The main motivation behind this solving paradigm is to exploit the synergies between the different problems (or tasks) being optimized. Going deeper, we resort in this paper to the also recent paradigm Evolutionary Multitasking (EM). We introduce the adaptation of the recently proposed Multifactorial Cellular Genetic Algorithm (MFCGA) for solving MOPs, giving rise to the Multiobjective MFCGA (MO-MFCGA). An extensive performance analysis is conducted using the Multiobjective Multifactorial Evolutionary Algorithm as comparison baseline. The experimentation is conducted over 10 multitasking setups, using the Multiobjective Euclidean Traveling Salesman Problem as benchmarking problem. We also perform a deep analysis on the genetic transferability among the problem instances employed, using the synergies among tasks aroused along the MO-MFCGA search procedure.
科研通智能强力驱动
Strongly Powered by AbleSci AI