亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Exploiting the paddle-wheel mechanism for the design of fast ion conductors

快离子导体 化学物理 离子 机制(生物学) 材料科学 纳米技术 电导率 电解质 导电体 热传导 固态 离子运输机 扩散 化学 物理 电极 热力学 物理化学 有机化学 量子力学 复合材料
作者
Zhizhen Zhang,Linda F. Nazar
出处
期刊:Nature Reviews Materials [Springer Nature]
卷期号:7 (5): 389-405 被引量:194
标识
DOI:10.1038/s41578-021-00401-0
摘要

As an indispensable component in solid-state devices, superionic conductors can exhibit liquid-like and exceptionally high alkali cation conductivity in their crystalline lattices. A fundamental understanding of the nature of superionic behaviour at the atomic level is crucial for exploiting this behaviour in new technologies such as solid-state batteries, but remains a major challenge. Studies of ion transport in numerous materials over the past three decades have provided insight into cation conduction mechanisms. These efforts have mainly emphasized the impact of the static framework on cation diffusivity, whereas the contribution from cation–anion interplay has been largely overlooked. However, recent reports have revealed intriguing observations of the influence of anion rotational dynamics on cation translational processes through the paddle-wheel mechanism. This Review aims to illuminate this rapidly evolving topic, providing a perspective and direction for future breakthroughs. We summarize the polyanion groups that exhibit anion rotational or reorientational features and describe the advanced techniques available for studying the interaction between cation diffusion and anion rotation. Moreover, we identify strategies to stabilize disordered superionic phases at room temperature, thus enabling the paddle-wheel mechanism to be exploited to achieve super-high conductivity in solid electrolytes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叽了咕噜完成签到,获得积分10
20秒前
JamesPei应助科研通管家采纳,获得10
21秒前
完美世界应助科研通管家采纳,获得10
21秒前
BowieHuang应助科研通管家采纳,获得10
21秒前
英俊的铭应助科研通管家采纳,获得10
21秒前
Akim应助科研通管家采纳,获得10
21秒前
41秒前
蛐蛐完成签到,获得积分20
44秒前
蛐蛐发布了新的文献求助10
48秒前
少年锦时完成签到,获得积分10
1分钟前
1分钟前
桔子完成签到,获得积分10
1分钟前
uwasa完成签到,获得积分10
1分钟前
桔子发布了新的文献求助10
1分钟前
菲菲公主完成签到 ,获得积分10
1分钟前
an完成签到 ,获得积分10
1分钟前
今后应助康康采纳,获得30
1分钟前
bkagyin应助谭代涛采纳,获得10
2分钟前
传奇3应助科研通管家采纳,获得10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
2分钟前
江枫渔火完成签到 ,获得积分10
2分钟前
momo发布了新的文献求助10
2分钟前
2分钟前
康康完成签到,获得积分10
2分钟前
MMI完成签到 ,获得积分10
2分钟前
康康发布了新的文献求助30
2分钟前
2分钟前
ljx发布了新的文献求助10
2分钟前
maher完成签到 ,获得积分10
2分钟前
yu完成签到 ,获得积分10
2分钟前
3分钟前
噗愣噗愣地刚发芽完成签到 ,获得积分10
3分钟前
3分钟前
谭代涛发布了新的文献求助10
3分钟前
3分钟前
真实的静枫完成签到,获得积分20
3分钟前
3分钟前
KY2022完成签到,获得积分10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599798
求助须知:如何正确求助?哪些是违规求助? 4685530
关于积分的说明 14838588
捐赠科研通 4671137
什么是DOI,文献DOI怎么找? 2538247
邀请新用户注册赠送积分活动 1505527
关于科研通互助平台的介绍 1470924