Machine learning–based personalized prediction of gastric cancer incidence using the endoscopic and histologic findings at the initial endoscopy

医学 食管胃十二指肠镜检查 萎缩性胃炎 胃肠病学 内窥镜检查 肠化生 入射(几何) 癌症 胃炎 危险系数 累积发病率 内科学 幽门螺杆菌 置信区间 物理 光学 移植
作者
Junya Arai,Tomonori Aoki,Masaya Sato,Ryota Niikura,Nobumi Suzuki,Rei Ishibashi,Yosuke Tsuji,Atsuo Yamada,Yoshihiro Hirata,Tetsuo Ushiku,Yoku Hayakawa,Mitsuhiro Fujishiro
出处
期刊:Gastrointestinal Endoscopy [Elsevier]
卷期号:95 (5): 864-872 被引量:30
标识
DOI:10.1016/j.gie.2021.12.033
摘要

Accurate risk stratification for gastric cancer is required for optimal endoscopic surveillance in patients with chronic gastritis. We aimed to develop a machine learning (ML) model that incorporates endoscopic and histologic findings for an individualized prediction of gastric cancer incidence.We retrospectively evaluated 1099 patients with chronic gastritis who underwent EGD and biopsy sampling of the gastric mucosa. Patients were randomly divided into training and test sets (4:1). We constructed a conventional Cox proportional hazard model and 3 ML models. Baseline characteristics, endoscopic atrophy, and Operative Link on Gastritis-Intestinal Metaplasia Assessment (OLGIM)/Operative Link on Gastritis Assessment (OLGA) stage at initial EGD were comprehensively assessed. Model performance was evaluated using Harrel's c-index.During a mean follow-up of 5.63 years, 94 patients (8.55%) developed gastric cancer. The gradient-boosting decision tree (GBDT) model achieved the best performance (c-index from the test set, .84) and showed high discriminative ability in stratifying the test set into 3 risk categories (P < .001). Age, OLGIM/OLGA stage, endoscopic atrophy, and history of malignant tumors other than gastric cancer were important predictors of gastric cancer incidence in the GBDT model. Furthermore, the proposed GBDT model enabled the generation of a personalized cumulative incidence prediction curve for each patient.We developed a novel ML model that incorporates endoscopic and histologic findings at initial EGD for personalized risk prediction of gastric cancer. This model may lead to the development of effective and personalized follow-up strategies after initial EGD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ll完成签到,获得积分20
刚刚
刚刚
年轻的吐司完成签到,获得积分10
刚刚
一条猫发布了新的文献求助10
刚刚
从容飞凤完成签到,获得积分10
1秒前
Jasper应助香菜统治全世界采纳,获得10
2秒前
罗冬发布了新的文献求助10
3秒前
君临梅阿查完成签到,获得积分10
3秒前
ayu发布了新的文献求助10
5秒前
alexyusheng完成签到,获得积分20
5秒前
7秒前
JYH完成签到,获得积分20
8秒前
豪文完成签到,获得积分20
8秒前
10秒前
11秒前
紧张的皮皮虾完成签到,获得积分20
11秒前
songvv发布了新的文献求助10
12秒前
13秒前
TCXYL5114发布了新的文献求助30
15秒前
阔达书雪发布了新的文献求助10
17秒前
17秒前
汉堡包应助罗冬采纳,获得10
19秒前
大模型应助小乌龟采纳,获得10
19秒前
songvv完成签到,获得积分20
19秒前
老詹头关注了科研通微信公众号
20秒前
20秒前
21秒前
Kayla完成签到 ,获得积分10
21秒前
22秒前
24秒前
lalala发布了新的文献求助10
24秒前
Owen应助颜颜采纳,获得10
24秒前
ohh发布了新的文献求助10
25秒前
zengyan完成签到 ,获得积分10
25秒前
25秒前
25秒前
崔佳鑫完成签到 ,获得积分10
27秒前
展七发布了新的文献求助10
27秒前
脑洞疼应助Kannan采纳,获得10
27秒前
28秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147946
求助须知:如何正确求助?哪些是违规求助? 2798939
关于积分的说明 7832669
捐赠科研通 2456017
什么是DOI,文献DOI怎么找? 1307045
科研通“疑难数据库(出版商)”最低求助积分说明 628043
版权声明 601620