Machine learning–based personalized prediction of gastric cancer incidence using the endoscopic and histologic findings at the initial endoscopy

医学 食管胃十二指肠镜检查 萎缩性胃炎 胃肠病学 内窥镜检查 肠化生 入射(几何) 癌症 胃炎 危险系数 累积发病率 内科学 幽门螺杆菌 置信区间 物理 光学 移植
作者
Junya Arai,Tomonori Aoki,Masaya Sato,Ryota Niikura,Nobumi Suzuki,Rei Ishibashi,Yosuke Tsuji,Atsuo Yamada,Yoshihiro Hirata,Tetsuo Ushiku,Yoku Hayakawa,Mitsuhiro Fujishiro
出处
期刊:Gastrointestinal Endoscopy [Elsevier BV]
卷期号:95 (5): 864-872 被引量:39
标识
DOI:10.1016/j.gie.2021.12.033
摘要

Background and Aims Accurate risk stratification for gastric cancer is required for optimal endoscopic surveillance in patients with chronic gastritis. We aimed to develop a machine learning (ML) model that incorporates endoscopic and histologic findings for an individualized prediction of gastric cancer incidence. Methods We retrospectively evaluated 1099 patients with chronic gastritis who underwent EGD and biopsy sampling of the gastric mucosa. Patients were randomly divided into training and test sets (4:1). We constructed a conventional Cox proportional hazard model and 3 ML models. Baseline characteristics, endoscopic atrophy, and Operative Link on Gastritis-Intestinal Metaplasia Assessment (OLGIM)/Operative Link on Gastritis Assessment (OLGA) stage at initial EGD were comprehensively assessed. Model performance was evaluated using Harrel's c-index. Results During a mean follow-up of 5.63 years, 94 patients (8.55%) developed gastric cancer. The gradient-boosting decision tree (GBDT) model achieved the best performance (c-index from the test set, .84) and showed high discriminative ability in stratifying the test set into 3 risk categories (P < .001). Age, OLGIM/OLGA stage, endoscopic atrophy, and history of malignant tumors other than gastric cancer were important predictors of gastric cancer incidence in the GBDT model. Furthermore, the proposed GBDT model enabled the generation of a personalized cumulative incidence prediction curve for each patient. Conclusions We developed a novel ML model that incorporates endoscopic and histologic findings at initial EGD for personalized risk prediction of gastric cancer. This model may lead to the development of effective and personalized follow-up strategies after initial EGD. Accurate risk stratification for gastric cancer is required for optimal endoscopic surveillance in patients with chronic gastritis. We aimed to develop a machine learning (ML) model that incorporates endoscopic and histologic findings for an individualized prediction of gastric cancer incidence. We retrospectively evaluated 1099 patients with chronic gastritis who underwent EGD and biopsy sampling of the gastric mucosa. Patients were randomly divided into training and test sets (4:1). We constructed a conventional Cox proportional hazard model and 3 ML models. Baseline characteristics, endoscopic atrophy, and Operative Link on Gastritis-Intestinal Metaplasia Assessment (OLGIM)/Operative Link on Gastritis Assessment (OLGA) stage at initial EGD were comprehensively assessed. Model performance was evaluated using Harrel's c-index. During a mean follow-up of 5.63 years, 94 patients (8.55%) developed gastric cancer. The gradient-boosting decision tree (GBDT) model achieved the best performance (c-index from the test set, .84) and showed high discriminative ability in stratifying the test set into 3 risk categories (P < .001). Age, OLGIM/OLGA stage, endoscopic atrophy, and history of malignant tumors other than gastric cancer were important predictors of gastric cancer incidence in the GBDT model. Furthermore, the proposed GBDT model enabled the generation of a personalized cumulative incidence prediction curve for each patient. We developed a novel ML model that incorporates endoscopic and histologic findings at initial EGD for personalized risk prediction of gastric cancer. This model may lead to the development of effective and personalized follow-up strategies after initial EGD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chinaproteome完成签到,获得积分10
1秒前
YY发布了新的文献求助30
1秒前
2秒前
chinaproteome发布了新的文献求助10
3秒前
4秒前
小二郎应助蒙古马采纳,获得10
5秒前
所所应助HH采纳,获得10
5秒前
赘婿应助子车立轩采纳,获得10
6秒前
原来是啊歪啊完成签到 ,获得积分10
7秒前
鹿子默完成签到,获得积分10
7秒前
霖鸿发布了新的文献求助10
8秒前
动听的母鸡完成签到,获得积分10
8秒前
holi完成签到 ,获得积分10
8秒前
9秒前
酷波er应助Novermber采纳,获得10
9秒前
10秒前
Narcisa发布了新的文献求助10
11秒前
传奇3应助李昕123采纳,获得10
11秒前
13秒前
南国之霄发布了新的文献求助10
13秒前
传奇3应助kai采纳,获得10
14秒前
14秒前
14秒前
上官若男应助俏皮的松鼠采纳,获得10
16秒前
17秒前
18秒前
子车立轩发布了新的文献求助10
18秒前
LZQ应助多情道之采纳,获得10
18秒前
鹿子默发布了新的文献求助10
19秒前
ddd123完成签到,获得积分10
20秒前
Liyh应助尊敬皮皮虾采纳,获得10
21秒前
蒙古马发布了新的文献求助10
21秒前
22秒前
22秒前
23秒前
jhxie发布了新的文献求助10
24秒前
hug完成签到,获得积分0
24秒前
lll完成签到,获得积分10
25秒前
26秒前
zhaoli完成签到 ,获得积分10
27秒前
高分求助中
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 400
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
离子交换膜面电阻的测定方法学 300
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3707809
求助须知:如何正确求助?哪些是违规求助? 3256333
关于积分的说明 9900006
捐赠科研通 2968852
什么是DOI,文献DOI怎么找? 1628207
邀请新用户注册赠送积分活动 772022
科研通“疑难数据库(出版商)”最低求助积分说明 743580