A framework to optimize spring-driven autoinjectors

计算机科学 稳健性(进化) 多目标优化 替代模型 灵敏度(控制系统) Sobol序列 数学优化 人工智能 机器学习 工程类 数学 电子工程 生物化学 基因 化学
作者
Xiaoxu Zhong,Ilias Bilionis,Arezoo M. Ardekani
出处
期刊:International Journal of Pharmaceutics [Elsevier]
卷期号:617: 121588-121588 被引量:2
标识
DOI:10.1016/j.ijpharm.2022.121588
摘要

The major challenges in the optimization of autoinjectors lie in developing an accurate model and meeting competing requirements. We have developed a computational model for spring-driven autoinjectors, which can accurately predict the kinematics of the syringe barrel, needle displacement (travel distance) at the start of drug delivery, and injection time. This paper focuses on proposing a framework to optimize the single-design of autoinjectors, which deliver multiple drugs with different viscosity. We replace the computational model for spring-driven autoinjectors with a surrogate model, i.e., a deep neural network, which improves computational efficiency 1,000 times. Using this surrogate, we perform Sobol sensitivity analysis to understand the effect of each model input on the quantities of interest. Additionally, we pose the design problem within a multi-objective optimization framework. We use our surrogate to discover the corresponding Pareto optimal designs via Pymoo, an open source library for multi-objective optimization. After these steps, we evaluate the robustness of these solutions and finally identify two promising candidates. This framework can be effectively used for device design optimization as the computation is not demanding, and decision-makers can easily incorporate their preferences into this framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
啵乐乐完成签到,获得积分10
1秒前
哈哈完成签到,获得积分20
1秒前
2秒前
logic完成签到,获得积分10
2秒前
岁月轮回发布了新的文献求助10
2秒前
小离发布了新的文献求助10
2秒前
CodeCraft应助艺玲采纳,获得10
2秒前
chenjyuu完成签到,获得积分10
3秒前
韭黄发布了新的文献求助10
3秒前
3秒前
子车雁开完成签到,获得积分10
3秒前
4秒前
4秒前
故意的傲玉应助经法采纳,获得10
5秒前
上官若男应助经法采纳,获得10
5秒前
buno应助经法采纳,获得10
5秒前
1111应助经法采纳,获得10
5秒前
Lucas应助经法采纳,获得10
5秒前
Jasper应助经法采纳,获得10
5秒前
5秒前
习习应助经法采纳,获得10
5秒前
小鱼骑单车应助经法采纳,获得10
5秒前
辰柒发布了新的文献求助10
6秒前
英俊的铭应助经法采纳,获得10
6秒前
wgl发布了新的文献求助10
6秒前
领导范儿应助氨基酸采纳,获得30
6秒前
6秒前
科研通AI2S应助zink采纳,获得10
7秒前
科目三应助Jimmy采纳,获得10
7秒前
7秒前
7秒前
芋圆Z.发布了新的文献求助10
8秒前
8秒前
东皇太憨完成签到,获得积分10
8秒前
8秒前
9秒前
润润轩轩发布了新的文献求助10
9秒前
9秒前
orixero应助韭黄采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759