Prediction of gas leakage and dispersion in utility tunnels based on CFD-EnKF coupling model: A 3D full-scale application

泄漏(经济) 计算流体力学 石油工程 易燃液体 环境科学 模拟 计算机科学 工程类 废物管理 经济 宏观经济学 航空航天工程
作者
Jitao Cai,Jiansong Wu,Shuaiqi Yuan,Desheng Kong,Xiaole Zhang
出处
期刊:Sustainable Cities and Society [Elsevier]
卷期号:80: 103789-103789 被引量:31
标识
DOI:10.1016/j.scs.2022.103789
摘要

Natural gas compartment accommodated in utility tunnels is beneficial in meeting the pressing demand of energy supply and sustainable urban environment. However, the leaking gas characterized by flammable and explosive can pose a huge threat to the safe operation of the utility tunnel. When an unexpected gas leakage accident happens in the actual situation, the prior information associated with the leakage source is commonly unclear or unknown. Therefore, the absence of an available tool for reasonable leakage and dispersion prediction in the above scenario precludes the timely and appropriate emergency response treatment. In this study, a three-dimensional source term estimation (3D-STE) model with the combination of the computational fluid dynamics (CFD) and ensemble Kalman filter (EnKF) algorithm is proposed to achieve spatiotemporal gas concentration prediction and gas emission source estimation. In the proposed approach, the observation data can be incorporated into the gas dispersion simulations continuously, thus the simulation results can be revised by the observation data and the source term estimation of gas leakage can be achieved by employing the EnKF algorithm. A twin experiment is employed to validate the effectiveness and practicability of the proposed model. The results show that the proposed model can revise the prior errors in the gas leakage rate significantly and obtain an accurate prediction of gas concentration distribution as well as gas leakage rate. A feasible framework is also proposed serving as a good paradigm for the 3D-STE model application. This study helps for consequence assessment and emergency response of gas leakage accidents in utility tunnels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助白华苍松采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
3秒前
鹅逗完成签到 ,获得积分10
4秒前
6秒前
123完成签到,获得积分10
6秒前
闪电完成签到,获得积分10
6秒前
俟天晴完成签到,获得积分10
6秒前
慕青应助夏末采纳,获得10
6秒前
西柚完成签到,获得积分10
7秒前
7秒前
shenshi发布了新的文献求助10
8秒前
完美世界应助踏实的访文采纳,获得10
8秒前
revo完成签到,获得积分10
9秒前
10秒前
鸽鸽发布了新的文献求助10
10秒前
imomoe发布了新的文献求助10
10秒前
byron完成签到,获得积分10
11秒前
xy完成签到,获得积分10
11秒前
迷路的指甲油完成签到,获得积分10
11秒前
12秒前
12秒前
某某某发布了新的文献求助10
14秒前
14秒前
hiuwing发布了新的文献求助10
14秒前
15秒前
step_stone发布了新的文献求助10
15秒前
15秒前
格非完成签到,获得积分10
17秒前
17秒前
GodMG应助小政采纳,获得10
17秒前
Billy应助kook11采纳,获得30
17秒前
wengi94完成签到,获得积分10
17秒前
一切都好发布了新的文献求助10
18秒前
sss完成签到,获得积分10
18秒前
单纯手套111完成签到,获得积分10
18秒前
manholeFixerXM完成签到,获得积分10
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304234
求助须知:如何正确求助?哪些是违规求助? 2938264
关于积分的说明 8487851
捐赠科研通 2612638
什么是DOI,文献DOI怎么找? 1426821
科研通“疑难数据库(出版商)”最低求助积分说明 662842
邀请新用户注册赠送积分活动 647344