Prediction of gas leakage and dispersion in utility tunnels based on CFD-EnKF coupling model: A 3D full-scale application

泄漏(经济) 计算流体力学 石油工程 易燃液体 环境科学 模拟 计算机科学 工程类 废物管理 宏观经济学 航空航天工程 经济
作者
Jitao Cai,Jiansong Wu,Shuaiqi Yuan,Desheng Kong,Xiaole Zhang
出处
期刊:Sustainable Cities and Society [Elsevier BV]
卷期号:80: 103789-103789 被引量:31
标识
DOI:10.1016/j.scs.2022.103789
摘要

Natural gas compartment accommodated in utility tunnels is beneficial in meeting the pressing demand of energy supply and sustainable urban environment. However, the leaking gas characterized by flammable and explosive can pose a huge threat to the safe operation of the utility tunnel. When an unexpected gas leakage accident happens in the actual situation, the prior information associated with the leakage source is commonly unclear or unknown. Therefore, the absence of an available tool for reasonable leakage and dispersion prediction in the above scenario precludes the timely and appropriate emergency response treatment. In this study, a three-dimensional source term estimation (3D-STE) model with the combination of the computational fluid dynamics (CFD) and ensemble Kalman filter (EnKF) algorithm is proposed to achieve spatiotemporal gas concentration prediction and gas emission source estimation. In the proposed approach, the observation data can be incorporated into the gas dispersion simulations continuously, thus the simulation results can be revised by the observation data and the source term estimation of gas leakage can be achieved by employing the EnKF algorithm. A twin experiment is employed to validate the effectiveness and practicability of the proposed model. The results show that the proposed model can revise the prior errors in the gas leakage rate significantly and obtain an accurate prediction of gas concentration distribution as well as gas leakage rate. A feasible framework is also proposed serving as a good paradigm for the 3D-STE model application. This study helps for consequence assessment and emergency response of gas leakage accidents in utility tunnels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
xy发布了新的文献求助10
刚刚
KYRIELIU完成签到,获得积分10
刚刚
1秒前
zsk1122发布了新的文献求助10
1秒前
英姑应助糖醋可乐采纳,获得10
1秒前
斯奈克完成签到,获得积分10
2秒前
wwww发布了新的文献求助10
2秒前
YZ完成签到,获得积分10
2秒前
果汁儿完成签到 ,获得积分10
2秒前
FashionBoy应助光电很亮采纳,获得10
3秒前
huayi完成签到,获得积分10
3秒前
周雪峰完成签到,获得积分10
3秒前
小余同学发布了新的文献求助10
3秒前
球球实验出成果完成签到,获得积分10
3秒前
siyin发布了新的文献求助10
4秒前
传奇3应助棉花糖采纳,获得10
4秒前
爆米花应助tyy采纳,获得10
4秒前
郑烨发布了新的文献求助10
6秒前
年轻的汽车完成签到 ,获得积分10
7秒前
7秒前
非常可爱发布了新的文献求助20
7秒前
拉拉霍霍发布了新的文献求助10
7秒前
7秒前
ding5发布了新的文献求助20
8秒前
李健应助小陶子采纳,获得10
9秒前
善学以致用应助帅气的猫采纳,获得10
9秒前
明理乐儿发布了新的文献求助10
9秒前
siyin完成签到,获得积分10
9秒前
小橘发布了新的文献求助10
10秒前
11秒前
糖醋可乐发布了新的文献求助10
12秒前
12秒前
12秒前
12秒前
双shuang发布了新的文献求助10
14秒前
Any完成签到,获得积分10
14秒前
15秒前
乐一李完成签到,获得积分10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969458
求助须知:如何正确求助?哪些是违规求助? 3514286
关于积分的说明 11173363
捐赠科研通 3249652
什么是DOI,文献DOI怎么找? 1794948
邀请新用户注册赠送积分活动 875501
科研通“疑难数据库(出版商)”最低求助积分说明 804836