An Intelligent Deep Learning Enabled Marine Fish Species Detection and Classification Model

计算机科学 人工智能 卷积神经网络 鉴定(生物学) 人工神经网络 深度学习 机器学习 分割 过程(计算) 鱼类多样性 渔业 模式识别(心理学) 渔业 生态学 操作系统 生物
作者
Suja Cherukullapurath Mana,T. Sasipraba
出处
期刊:International Journal on Artificial Intelligence Tools [World Scientific]
卷期号:31 (01) 被引量:9
标识
DOI:10.1142/s0218213022500178
摘要

In recent times, marine fish species recognition becomes an important research area to protect the ocean environment. It is a tough and time-consuming operation to manually detect marine fish species on the ocean floor. Depending on the situation, extensive sample efforts may be required. These efforts might be harmful to the marine ecosystem. Automated classification methods are capable of properly classifying these fish on a consistent basis. An increasing number of people are becoming interested in utilizing electronic monitoring and reporting with artificial intelligence for the aim of fish identification and enhancing present techniques. It is becoming more usual to use video and pictures of fish (either underwater or on ships) in fishing operations. These techniques are operational, transportable, and non-invasive, and they provide high-quality pictures at a lower cost than traditional approaches. Automated image processing techniques such as Deep Learning (DL) and Machine Learning (ML) are now available, and they may be customized to perform efficient fish species identification and segmentation. In this aspect, this paper presents an Intelligent DL based Marine Fish Species Classification (IDL-MFSC) technique. The proposed IDL-MFSC technique involves three major processes such as pre-processing, fish detection and fish classification. Primarily, Weiner filtering-based noise removal process takes place as a pre-processing step. In addition, Mask R-CNN (Mask Region Based Convolutional Neural Networks) with Residual Network as a backbone network is used for fish detection. Moreover, Optimal Deep Kernel Extreme Learning Machine (ODKELM) based classification method is employed for determining the class labels of the marine fish species in which the parameter tuning of the DKELM model takes place using Water Wave Optimization (WWO) technique. The performance of the proposed method is tested using an openly accessible Fish4Knowledge dataset. The experimental result highlights the supremacy of the IDL-MFSC technique over the recent techniques with respect to various measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助WD采纳,获得10
刚刚
深情安青应助ZSWAA采纳,获得10
2秒前
华仔应助尺素寸心采纳,获得10
3秒前
青衣北风发布了新的文献求助10
4秒前
小马甲应助魔幻宛白采纳,获得10
4秒前
4秒前
wr1919发布了新的文献求助30
4秒前
6秒前
7秒前
7秒前
带虾的烧麦完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
马户的崛起完成签到,获得积分10
9秒前
10秒前
无情寒荷发布了新的文献求助10
10秒前
小豆豆应助艳子采纳,获得10
10秒前
11秒前
11秒前
simon发布了新的文献求助10
12秒前
12完成签到,获得积分10
12秒前
WD发布了新的文献求助10
12秒前
wxy发布了新的文献求助10
13秒前
魔幻宛白发布了新的文献求助10
14秒前
ZSWAA发布了新的文献求助10
14秒前
14秒前
15秒前
15秒前
flywo发布了新的文献求助10
18秒前
21秒前
ZSWAA完成签到,获得积分10
21秒前
Hello应助shinn采纳,获得30
22秒前
simon完成签到,获得积分10
22秒前
李健应助flywo采纳,获得10
22秒前
猪猪hero应助热心小松鼠采纳,获得10
22秒前
猪猪hero应助热心小松鼠采纳,获得10
23秒前
23秒前
23秒前
猪猪hero应助热心小松鼠采纳,获得10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967131
求助须知:如何正确求助?哪些是违规求助? 3512470
关于积分的说明 11163384
捐赠科研通 3247378
什么是DOI,文献DOI怎么找? 1793799
邀请新用户注册赠送积分活动 874615
科研通“疑难数据库(出版商)”最低求助积分说明 804450