An Intelligent Deep Learning Enabled Marine Fish Species Detection and Classification Model

计算机科学 人工智能 卷积神经网络 鉴定(生物学) 人工神经网络 深度学习 机器学习 分割 过程(计算) 鱼类多样性 渔业 模式识别(心理学) 渔业 生态学 生物 操作系统
作者
Suja Cherukullapurath Mana,T. Sasipraba
出处
期刊:International Journal on Artificial Intelligence Tools [World Scientific]
卷期号:31 (01) 被引量:9
标识
DOI:10.1142/s0218213022500178
摘要

In recent times, marine fish species recognition becomes an important research area to protect the ocean environment. It is a tough and time-consuming operation to manually detect marine fish species on the ocean floor. Depending on the situation, extensive sample efforts may be required. These efforts might be harmful to the marine ecosystem. Automated classification methods are capable of properly classifying these fish on a consistent basis. An increasing number of people are becoming interested in utilizing electronic monitoring and reporting with artificial intelligence for the aim of fish identification and enhancing present techniques. It is becoming more usual to use video and pictures of fish (either underwater or on ships) in fishing operations. These techniques are operational, transportable, and non-invasive, and they provide high-quality pictures at a lower cost than traditional approaches. Automated image processing techniques such as Deep Learning (DL) and Machine Learning (ML) are now available, and they may be customized to perform efficient fish species identification and segmentation. In this aspect, this paper presents an Intelligent DL based Marine Fish Species Classification (IDL-MFSC) technique. The proposed IDL-MFSC technique involves three major processes such as pre-processing, fish detection and fish classification. Primarily, Weiner filtering-based noise removal process takes place as a pre-processing step. In addition, Mask R-CNN (Mask Region Based Convolutional Neural Networks) with Residual Network as a backbone network is used for fish detection. Moreover, Optimal Deep Kernel Extreme Learning Machine (ODKELM) based classification method is employed for determining the class labels of the marine fish species in which the parameter tuning of the DKELM model takes place using Water Wave Optimization (WWO) technique. The performance of the proposed method is tested using an openly accessible Fish4Knowledge dataset. The experimental result highlights the supremacy of the IDL-MFSC technique over the recent techniques with respect to various measures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liulongchao完成签到,获得积分10
1秒前
华仔应助kolento采纳,获得10
1秒前
1秒前
1秒前
lfzw发布了新的文献求助10
1秒前
wanci应助MX120251336采纳,获得10
1秒前
祥辉NCU完成签到,获得积分10
1秒前
00完成签到,获得积分10
3秒前
大模型应助高子懿采纳,获得10
3秒前
熙辞辞发布了新的文献求助10
3秒前
ww发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
小甜瓜发布了新的文献求助10
4秒前
隐形曼青应助略略略采纳,获得10
4秒前
李健应助黎黎采纳,获得10
4秒前
4秒前
小蘑菇应助jj采纳,获得10
5秒前
5秒前
打打应助ghj采纳,获得10
5秒前
Jasper应助冷傲纸鹤采纳,获得10
5秒前
5秒前
全脂奶粉完成签到,获得积分10
5秒前
青栀完成签到,获得积分10
5秒前
张张完成签到,获得积分10
6秒前
墨子完成签到,获得积分10
6秒前
研友_VZG7GZ应助喵喵采纳,获得10
6秒前
7秒前
lfzw完成签到,获得积分10
7秒前
7秒前
lii发布了新的文献求助20
8秒前
闫永娟发布了新的文献求助10
8秒前
柏代桃发布了新的文献求助10
8秒前
songhan完成签到,获得积分10
9秒前
9秒前
9秒前
lin发布了新的文献求助10
9秒前
完美世界应助王鹏采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
ts发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718202
求助须知:如何正确求助?哪些是违规求助? 5251289
关于积分的说明 15284999
捐赠科研通 4868486
什么是DOI,文献DOI怎么找? 2614197
邀请新用户注册赠送积分活动 1564030
关于科研通互助平台的介绍 1521515