An Intelligent Deep Learning Enabled Marine Fish Species Detection and Classification Model

计算机科学 人工智能 卷积神经网络 鉴定(生物学) 人工神经网络 深度学习 机器学习 分割 过程(计算) 鱼类多样性 渔业 模式识别(心理学) 渔业 生态学 操作系统 生物
作者
Suja Cherukullapurath Mana,T. Sasipraba
出处
期刊:International Journal on Artificial Intelligence Tools [World Scientific]
卷期号:31 (01) 被引量:9
标识
DOI:10.1142/s0218213022500178
摘要

In recent times, marine fish species recognition becomes an important research area to protect the ocean environment. It is a tough and time-consuming operation to manually detect marine fish species on the ocean floor. Depending on the situation, extensive sample efforts may be required. These efforts might be harmful to the marine ecosystem. Automated classification methods are capable of properly classifying these fish on a consistent basis. An increasing number of people are becoming interested in utilizing electronic monitoring and reporting with artificial intelligence for the aim of fish identification and enhancing present techniques. It is becoming more usual to use video and pictures of fish (either underwater or on ships) in fishing operations. These techniques are operational, transportable, and non-invasive, and they provide high-quality pictures at a lower cost than traditional approaches. Automated image processing techniques such as Deep Learning (DL) and Machine Learning (ML) are now available, and they may be customized to perform efficient fish species identification and segmentation. In this aspect, this paper presents an Intelligent DL based Marine Fish Species Classification (IDL-MFSC) technique. The proposed IDL-MFSC technique involves three major processes such as pre-processing, fish detection and fish classification. Primarily, Weiner filtering-based noise removal process takes place as a pre-processing step. In addition, Mask R-CNN (Mask Region Based Convolutional Neural Networks) with Residual Network as a backbone network is used for fish detection. Moreover, Optimal Deep Kernel Extreme Learning Machine (ODKELM) based classification method is employed for determining the class labels of the marine fish species in which the parameter tuning of the DKELM model takes place using Water Wave Optimization (WWO) technique. The performance of the proposed method is tested using an openly accessible Fish4Knowledge dataset. The experimental result highlights the supremacy of the IDL-MFSC technique over the recent techniques with respect to various measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
清爽如雪完成签到 ,获得积分10
2秒前
Gauss完成签到,获得积分0
2秒前
sherrycofe应助WeiBao采纳,获得10
3秒前
weslywang发布了新的文献求助10
3秒前
bao完成签到,获得积分10
3秒前
lisa发布了新的文献求助10
6秒前
Hello应助LIU采纳,获得10
7秒前
Jing完成签到 ,获得积分10
10秒前
yana完成签到,获得积分10
10秒前
等风来1234发布了新的文献求助10
11秒前
12秒前
自由质数完成签到,获得积分10
13秒前
13秒前
Singularity应助不喝奶茶采纳,获得10
14秒前
Lucas应助keyanzhangxiao采纳,获得10
15秒前
爱听歌的灵珊完成签到,获得积分10
15秒前
折耳Doc完成签到,获得积分20
16秒前
友之的星星完成签到,获得积分10
16秒前
丘比特应助飘逸凝丝采纳,获得10
16秒前
朴实的小萱完成签到 ,获得积分10
17秒前
kyfw完成签到 ,获得积分10
19秒前
渔舟唱晚发布了新的文献求助30
19秒前
20秒前
不配.应助jessie采纳,获得20
21秒前
万能图书馆应助kittency采纳,获得10
22秒前
22秒前
23秒前
热情的听露给热情的听露的求助进行了留言
24秒前
曲聋五完成签到 ,获得积分10
25秒前
tachikoma完成签到,获得积分10
27秒前
cccyyy发布了新的文献求助10
27秒前
优秀的小兔子完成签到 ,获得积分10
27秒前
天天完成签到,获得积分10
27秒前
28秒前
打打应助科研通管家采纳,获得10
29秒前
情怀应助科研通管家采纳,获得10
29秒前
无花果应助科研通管家采纳,获得10
29秒前
丘比特应助科研通管家采纳,获得10
29秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134917
求助须知:如何正确求助?哪些是违规求助? 2785800
关于积分的说明 7774138
捐赠科研通 2441635
什么是DOI,文献DOI怎么找? 1298038
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825