An Intelligent Deep Learning Enabled Marine Fish Species Detection and Classification Model

计算机科学 人工智能 卷积神经网络 鉴定(生物学) 人工神经网络 深度学习 机器学习 分割 过程(计算) 鱼类多样性 渔业 模式识别(心理学) 渔业 生态学 生物 操作系统
作者
Suja Cherukullapurath Mana,T. Sasipraba
出处
期刊:International Journal on Artificial Intelligence Tools [World Scientific]
卷期号:31 (01) 被引量:9
标识
DOI:10.1142/s0218213022500178
摘要

In recent times, marine fish species recognition becomes an important research area to protect the ocean environment. It is a tough and time-consuming operation to manually detect marine fish species on the ocean floor. Depending on the situation, extensive sample efforts may be required. These efforts might be harmful to the marine ecosystem. Automated classification methods are capable of properly classifying these fish on a consistent basis. An increasing number of people are becoming interested in utilizing electronic monitoring and reporting with artificial intelligence for the aim of fish identification and enhancing present techniques. It is becoming more usual to use video and pictures of fish (either underwater or on ships) in fishing operations. These techniques are operational, transportable, and non-invasive, and they provide high-quality pictures at a lower cost than traditional approaches. Automated image processing techniques such as Deep Learning (DL) and Machine Learning (ML) are now available, and they may be customized to perform efficient fish species identification and segmentation. In this aspect, this paper presents an Intelligent DL based Marine Fish Species Classification (IDL-MFSC) technique. The proposed IDL-MFSC technique involves three major processes such as pre-processing, fish detection and fish classification. Primarily, Weiner filtering-based noise removal process takes place as a pre-processing step. In addition, Mask R-CNN (Mask Region Based Convolutional Neural Networks) with Residual Network as a backbone network is used for fish detection. Moreover, Optimal Deep Kernel Extreme Learning Machine (ODKELM) based classification method is employed for determining the class labels of the marine fish species in which the parameter tuning of the DKELM model takes place using Water Wave Optimization (WWO) technique. The performance of the proposed method is tested using an openly accessible Fish4Knowledge dataset. The experimental result highlights the supremacy of the IDL-MFSC technique over the recent techniques with respect to various measures.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
香蕉谷芹发布了新的文献求助10
4秒前
蓝天应助山楂采纳,获得10
5秒前
10秒前
年年完成签到,获得积分10
12秒前
明亮的念梦完成签到 ,获得积分10
13秒前
科研通AI2S应助健忘傲柏采纳,获得10
14秒前
14秒前
16秒前
19秒前
JamesPei应助小白采纳,获得10
20秒前
huagu722发布了新的文献求助10
21秒前
21秒前
21秒前
21秒前
22秒前
23秒前
ck完成签到 ,获得积分20
23秒前
25秒前
liuyepiao完成签到,获得积分10
26秒前
EurekaOvo发布了新的文献求助10
26秒前
李爱国应助zhou国兵采纳,获得10
27秒前
YangZhang发布了新的文献求助10
27秒前
28秒前
zwj发布了新的文献求助10
30秒前
思源应助yuanjie采纳,获得10
30秒前
留猪发布了新的文献求助10
30秒前
30秒前
毛毛发布了新的文献求助10
33秒前
Wangjingxuan发布了新的文献求助10
35秒前
qzs完成签到,获得积分10
37秒前
38秒前
赘婿应助SICHEN采纳,获得10
39秒前
Jrssion完成签到,获得积分10
40秒前
40秒前
闫123完成签到,获得积分10
41秒前
喜东东发布了新的文献求助30
44秒前
48秒前
xxs应助科研通管家采纳,获得10
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Key Thinkers in Industrial and Organizational Psychology 500
A positive solution of a nonlinear elliptic equation in $\Bbb R^N$ with $G$-symmetry 200
Eine Fährtenschicht im mittelfränkischen Blasensandstein 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5869551
求助须知:如何正确求助?哪些是违规求助? 6453169
关于积分的说明 15661332
捐赠科研通 4985385
什么是DOI,文献DOI怎么找? 2688390
邀请新用户注册赠送积分活动 1630820
关于科研通互助平台的介绍 1588927