Decentralized coordinated operation model of VPP and P2H systems based on stochastic-bargaining game considering multiple uncertainties and carbon cost

讨价还价问题 计算机科学 数学优化 分布式计算 数学 数理经济学
作者
Xuejie Wang,Huiru Zhao,Hao Lu,Yuanyuan Zhang,Yuwei Wang,Jingbo Wang
出处
期刊:Applied Energy [Elsevier]
卷期号:312: 118750-118750 被引量:31
标识
DOI:10.1016/j.apenergy.2022.118750
摘要

In order to achieve low-carbon development, the joint operation of virtual power plants (VPP) and clean power to hydrogen (P2H) is a hot issue. However, the conventional centralized optimization strategy ignores the information asymmetry between VPP and P2H, resulting in disorderly competition and low market efficiency. Based on this, this paper proposes a decentralized coordinated operation method of the VPP-P2H combined system considering the profits of each player. First, the stochastic optimization operation model of VPP and P2H is built involving the multiple uncertainties on both sides of the source and load. Secondly, based on the Nash-Harsanyi bargaining game theory, a multi-agent decentralized coordinated operation model of VPP-P2H is established. The model is further equivalent to the minimization of coordinated operation cost sub-problem and payment bargaining sub-problem. For the privacy of each player, the improved alternating direction multiplier method (ADMM) is used to solve the above two sub-problems. Finally, the effectiveness of the proposed decentralized coordinated operation model and distributed algorithm are verified. The simulation results show that compared with the individual operation mode, through coordinated operation, the operating costs of P2H1, P2H2, and VPP are reduced by 19.59%, 18.18%, and 16.61%, respectively. In addition, the improved-ADMM algorithm also improves the solution efficiency of the system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缓慢的战斗机完成签到,获得积分20
1秒前
圣晟胜发布了新的文献求助10
1秒前
科研通AI5应助nextconnie采纳,获得10
2秒前
陈朝旧迹完成签到,获得积分10
2秒前
无花果应助虚心海燕采纳,获得10
3秒前
sun发布了新的文献求助30
4秒前
4秒前
KBYer完成签到,获得积分10
4秒前
FashionBoy应助阳阳采纳,获得10
4秒前
许多知识发布了新的文献求助10
5秒前
苏源智完成签到,获得积分10
5秒前
Andy完成签到 ,获得积分10
7秒前
明理晓霜发布了新的文献求助10
9秒前
ZHANGMANLI0422关注了科研通微信公众号
9秒前
M先生发布了新的文献求助30
10秒前
FashionBoy应助许多知识采纳,获得10
11秒前
Poyd完成签到,获得积分10
14秒前
14秒前
故意的傲玉应助tao_blue采纳,获得10
15秒前
15秒前
kid1912完成签到,获得积分0
15秒前
小马甲应助一网小海蜇采纳,获得10
18秒前
专一的笑阳完成签到 ,获得积分10
18秒前
xuesensu完成签到 ,获得积分10
22秒前
豌豆完成签到,获得积分10
23秒前
M先生完成签到,获得积分10
23秒前
24秒前
26秒前
科研通AI5应助sun采纳,获得10
26秒前
shitzu完成签到 ,获得积分10
27秒前
choco发布了新的文献求助10
29秒前
30秒前
李健的小迷弟应助sun采纳,获得10
30秒前
Jzhang应助liyuchen采纳,获得10
30秒前
魏伯安发布了新的文献求助30
30秒前
jjjjjj发布了新的文献求助30
32秒前
33秒前
伯赏诗霜发布了新的文献求助10
33秒前
糟糕的鹏飞完成签到 ,获得积分10
34秒前
34秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849