亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning algorithms are comparable to conventional regression models in predicting distant metastasis of follicular thyroid carcinoma

接收机工作特性 置信区间 算法 医学 逻辑回归 内科学 肿瘤科 转移 机器学习 甲状腺癌 人工智能 计算机科学 甲状腺 癌症
作者
Yaqian Mao,Huiyu Lan,Wei Lin,Jixing Liang,Huibin Huang,Liantao Li,Junping Wen,Gang Chen
出处
期刊:Clinical Endocrinology [Wiley]
卷期号:98 (1): 98-109 被引量:6
标识
DOI:10.1111/cen.14693
摘要

Distant metastasis often indicates a poor prognosis, so early screening and diagnosis play a significant role. Our study aims to construct and verify a predictive model based on machine learning (ML) algorithms that can estimate the risk of distant metastasis of newly diagnosed follicular thyroid carcinoma (FTC).This was a retrospective study based on the Surveillance, Epidemiology, and End Results (SEER) database from 2004 to 2015.A total of 5809 FTC patients were included in the data analysis. Among them, there were 214 (3.68%) cases with distant metastasis.Univariate and multivariate logistic regression (LR) analyses were used to determine independent risk factors. Seven commonly used ML algorithms were applied for predictive model construction. We used the area under the receiver-operating characteristic (AUROC) curve to select the best ML algorithm. The optimal model was trained through 10-fold cross-validation and visualized by SHapley Additive exPlanations (SHAP). Finally, we compared it with the traditional LR method.In terms of predicting distant metastasis, the AUROCs of the seven ML algorithms were 0.746-0.836 in the test set. Among them, the Extreme Gradient Boosting (XGBoost) had the best prediction performance, with an AUROC of 0.836 (95% confidence interval [CI]: 0.775-0.897). After 10-fold cross-validation, its predictive power could reach the best [AUROC: 0.855 (95% CI: 0.803-0.906)], which was slightly higher than the classic binary LR model [AUROC: 0.845 (95% CI: 0.818-0.873)].The XGBoost approach was comparable to the conventional LR method for predicting the risk of distant metastasis for FTC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
evvj完成签到,获得积分10
7秒前
8秒前
大模型应助欣xin采纳,获得10
11秒前
斯文败类应助xx采纳,获得10
18秒前
20秒前
21秒前
果果发布了新的文献求助10
24秒前
无花果应助一个西藏采纳,获得10
27秒前
31秒前
35秒前
123123完成签到 ,获得积分10
38秒前
一个西藏发布了新的文献求助10
40秒前
Ripples完成签到,获得积分10
43秒前
YH完成签到,获得积分10
43秒前
44秒前
小黑超努力完成签到 ,获得积分10
44秒前
123完成签到 ,获得积分10
45秒前
49秒前
无花果应助西贝采纳,获得10
50秒前
吃狗粮的猫完成签到 ,获得积分10
51秒前
科研通AI2S应助Bin_Liu采纳,获得10
52秒前
量子星尘发布了新的文献求助150
55秒前
57秒前
58秒前
211JZH完成签到 ,获得积分10
58秒前
58秒前
西贝发布了新的文献求助10
1分钟前
白云发布了新的文献求助10
1分钟前
1分钟前
xl完成签到,获得积分10
1分钟前
shihuan发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
白云完成签到 ,获得积分10
1分钟前
sugkook发布了新的文献求助10
1分钟前
1分钟前
sugkook完成签到,获得积分10
1分钟前
Aippan发布了新的文献求助10
1分钟前
shihuan完成签到,获得积分20
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5063706
求助须知:如何正确求助?哪些是违规求助? 4287148
关于积分的说明 13358465
捐赠科研通 4105281
什么是DOI,文献DOI怎么找? 2247917
邀请新用户注册赠送积分活动 1253488
关于科研通互助平台的介绍 1184591