Machine learning algorithms are comparable to conventional regression models in predicting distant metastasis of follicular thyroid carcinoma

接收机工作特性 置信区间 算法 医学 逻辑回归 内科学 肿瘤科 转移 机器学习 甲状腺癌 人工智能 计算机科学 甲状腺 癌症
作者
Yaqian Mao,Huiyu Lan,Wei Lin,Jixing Liang,Huibin Huang,Liantao Li,Junping Wen,Gang Chen
出处
期刊:Clinical Endocrinology [Wiley]
卷期号:98 (1): 98-109 被引量:6
标识
DOI:10.1111/cen.14693
摘要

Distant metastasis often indicates a poor prognosis, so early screening and diagnosis play a significant role. Our study aims to construct and verify a predictive model based on machine learning (ML) algorithms that can estimate the risk of distant metastasis of newly diagnosed follicular thyroid carcinoma (FTC).This was a retrospective study based on the Surveillance, Epidemiology, and End Results (SEER) database from 2004 to 2015.A total of 5809 FTC patients were included in the data analysis. Among them, there were 214 (3.68%) cases with distant metastasis.Univariate and multivariate logistic regression (LR) analyses were used to determine independent risk factors. Seven commonly used ML algorithms were applied for predictive model construction. We used the area under the receiver-operating characteristic (AUROC) curve to select the best ML algorithm. The optimal model was trained through 10-fold cross-validation and visualized by SHapley Additive exPlanations (SHAP). Finally, we compared it with the traditional LR method.In terms of predicting distant metastasis, the AUROCs of the seven ML algorithms were 0.746-0.836 in the test set. Among them, the Extreme Gradient Boosting (XGBoost) had the best prediction performance, with an AUROC of 0.836 (95% confidence interval [CI]: 0.775-0.897). After 10-fold cross-validation, its predictive power could reach the best [AUROC: 0.855 (95% CI: 0.803-0.906)], which was slightly higher than the classic binary LR model [AUROC: 0.845 (95% CI: 0.818-0.873)].The XGBoost approach was comparable to the conventional LR method for predicting the risk of distant metastasis for FTC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
瞿访云完成签到,获得积分10
1秒前
科研文献搬运工完成签到,获得积分0
2秒前
爱静静应助zzd12318采纳,获得10
2秒前
3秒前
03210322完成签到 ,获得积分10
3秒前
好困举报来来求助涉嫌违规
4秒前
自信飞柏完成签到 ,获得积分10
4秒前
飞鸿踏雪关注了科研通微信公众号
4秒前
satchzhao完成签到,获得积分10
5秒前
南栀完成签到,获得积分10
6秒前
YJG完成签到,获得积分10
6秒前
凯哥完成签到,获得积分10
7秒前
武雨珍完成签到,获得积分10
9秒前
多啦啦完成签到,获得积分10
9秒前
奈克罗普陀西斯完成签到,获得积分10
10秒前
昵称完成签到,获得积分10
11秒前
zy完成签到,获得积分10
11秒前
ommphey完成签到 ,获得积分10
12秒前
可靠的书桃应助lixiang采纳,获得10
12秒前
12秒前
Smile完成签到,获得积分10
12秒前
msd2phd完成签到,获得积分10
13秒前
and999完成签到,获得积分10
13秒前
简单完成签到,获得积分10
14秒前
新青年完成签到,获得积分0
14秒前
renovel完成签到,获得积分10
14秒前
碧蓝曼安完成签到,获得积分10
15秒前
临时演员完成签到,获得积分0
15秒前
wuwa完成签到,获得积分10
15秒前
geopotter完成签到,获得积分10
16秒前
WJ1989完成签到,获得积分10
16秒前
16秒前
霸气的亿先完成签到 ,获得积分10
17秒前
actor2006完成签到,获得积分10
17秒前
伶俐鲂完成签到,获得积分10
18秒前
HAO完成签到,获得积分10
18秒前
哈哈哈完成签到,获得积分10
19秒前
共享精神应助佩佩采纳,获得10
19秒前
xiaojcom完成签到,获得积分10
19秒前
外向的书蝶完成签到,获得积分10
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150700
求助须知:如何正确求助?哪些是违规求助? 2802232
关于积分的说明 7846614
捐赠科研通 2459579
什么是DOI,文献DOI怎么找? 1309294
科研通“疑难数据库(出版商)”最低求助积分说明 628849
版权声明 601757