Application of Virtual Reality and Electrodermal Activity for the Detection of Cognitive Impairments

认知障碍 认知 计算机科学 多层感知器 神经影像学 听力学 人工智能 心理学 医学 神经科学 人工神经网络
作者
Rebecca Patient,Fawaz Ghali,Hoshang Kolivand,William Hurst,Nigel W. John
标识
DOI:10.1109/dese54285.2021.9719442
摘要

Mild Cognitive Impairment (MCI) is a definition of the diagnosis of early memory loss and disorientation. This study aims to identify people's symptoms through technology. However, machine learning (ML) can classify Cognitive Normal (CN) and Mild Cognitive Impairment (MCI) and Early Mild Cognitive Impairment (EMCI) using standard assessments from the Alzheimer's Disease Neuroimaging Initiative (ADNI); Montreal Cognitive (MoCA), Mini-Mental State Examination (MMSE), Functional Activities Questionnaire (FAQ). Consequently, a Multilayer Perceptron (MLP) model was assembled into tables; MCI vs CN, MCI vs EMCI, and CN vs MCI. Additionally, an MLP model was developed for CN vs MCI vs EMCI. As a result, of advanced model performance, a cascade 3-path categorisation approach was created. Similarly, the exploitation of meta-analysis indicated a combination of MLP models (MCI vs CN, MCI vs EMCI, and CN vs MCI) with an overall accuracy within an acceptable limit. In addition, better results were found when assessments were combined rather than individually. Furthermore, applying class weights and probability thresholds could improve the MLP framework by performance achieving a balanced specificity and sensitivity ratio. Altering class weights and probability thresholds when training the MLP neuro network model, the sensitivity and Accuracy could be progressed further. In conclusion, ML, VR and electrodermal activity are constrained. Introducing the possibility of activity-based applications to enhance innovative solutions for cognitive impairment diagnosis and treatment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
dungaway完成签到,获得积分10
1秒前
1秒前
1秒前
希望天下0贩的0应助Swin采纳,获得10
1秒前
1秒前
2秒前
李多多完成签到,获得积分10
2秒前
ha完成签到 ,获得积分10
2秒前
3秒前
小马甲应助dadadaniu采纳,获得10
3秒前
Zhangll完成签到,获得积分10
3秒前
3秒前
科研通AI5应助ww采纳,获得10
3秒前
咸鱼小武完成签到,获得积分10
3秒前
流沙无言发布了新的文献求助10
4秒前
4秒前
可靠幼旋完成签到,获得积分10
5秒前
6秒前
无尽夏发布了新的文献求助10
6秒前
无限雨南完成签到,获得积分10
7秒前
凌风发布了新的文献求助10
7秒前
胡子西瓜完成签到,获得积分10
8秒前
科研通AI5应助伶俐安萱采纳,获得10
9秒前
9秒前
师傅被妖怪抓走了完成签到,获得积分10
10秒前
小蘑菇应助1111采纳,获得10
10秒前
绣虎发布了新的文献求助10
10秒前
10秒前
无限雨南发布了新的文献求助10
11秒前
11秒前
陈明娃完成签到,获得积分10
11秒前
12秒前
12秒前
cc完成签到,获得积分20
13秒前
13秒前
14秒前
14秒前
okkkura发布了新的文献求助10
14秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3512998
求助须知:如何正确求助?哪些是违规求助? 3095363
关于积分的说明 9227963
捐赠科研通 2790410
什么是DOI,文献DOI怎么找? 1531185
邀请新用户注册赠送积分活动 711354
科研通“疑难数据库(出版商)”最低求助积分说明 706735