The prediction of potential risk path in railway traffic events

数据挖掘 计算机科学 路径(计算) 亲密度 数学 数学分析 程序设计语言
作者
Shuang Gu,Li Ke-Ping,Xingxing Zhang,Dongyang Yan,Liu Yang
出处
期刊:Reliability Engineering & System Safety [Elsevier BV]
卷期号:222: 108409-108409 被引量:2
标识
DOI:10.1016/j.ress.2022.108409
摘要

• For the first time, we predict the potential risk path in railway traffic events by the heterogeneous network-based model. • In network-based risk analysis, we combine global structure, local structure and attribute information to mine the abundant semantic meanings embedded in the form of text. • We implement the multi-path search for optimal, suboptimal and valid meta-paths by adding the strategy of removing edges to the meta-path search process. • The co-occurrence and association matrices measure the closeness of the connection between two nodes. In railway traffic operation, the prediction of risk path is one of the important issues because it can ensure the potential consequences are effectively mitigated and controlled to prevent the domino effect. However, it is quite difficult to mine the potential information and investigate the complex dependency in failure text data, which makes the prediction of potential risk path challenging. In this paper, we propose a new network-based risk prediction model to investigate the propagation path of potential risk and reduce the risk of cascade failures. Three kinds of information hidden in network connections are considered: local structural information, global structural information and attribute information. The model uses the keyword extraction method of text data for data preprocessing. The breadth-first search-based algorithm is improved to identify the meta-paths. The co-occurrence matrix and the association matrix are considered to play a role in the model. In order to verify the feasibility and advantages of the model, we use a dataset consisting of traffic events in Beijing subway as a case study. Results of the comparative analysis show that the proposed model not only can effectively predict the potential risk path, but also provides the best results in terms of ROC, AUC and Precision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
典雅的谷雪完成签到,获得积分10
刚刚
1秒前
2秒前
tanhieupy发布了新的文献求助10
2秒前
frankly120完成签到,获得积分10
2秒前
2秒前
隐形曼青应助拽根大恐龙采纳,获得10
3秒前
共享精神应助泡沫采纳,获得10
3秒前
4秒前
4秒前
4秒前
Promise完成签到 ,获得积分10
5秒前
阳光的以寒完成签到,获得积分10
5秒前
xcydd发布了新的文献求助30
7秒前
美好斓发布了新的文献求助10
7秒前
lllll07完成签到,获得积分10
8秒前
orixero应助傻傻的沛容采纳,获得10
9秒前
9秒前
尹妮妮发布了新的文献求助10
9秒前
stevenliu67完成签到,获得积分10
9秒前
上官若男应助机智从彤采纳,获得10
10秒前
Liangyu发布了新的文献求助30
10秒前
10秒前
小马甲应助大力出奇迹采纳,获得10
10秒前
晚霞不晚发布了新的文献求助10
10秒前
小罗发布了新的文献求助10
11秒前
李健应助lllll07采纳,获得20
13秒前
九日完成签到,获得积分10
13秒前
彭于彦祖应助苻如萱采纳,获得20
14秒前
鲤鱼舫完成签到,获得积分10
14秒前
14秒前
轻松尔蝶发布了新的文献求助20
16秒前
九日发布了新的文献求助10
16秒前
JINHUANHUAN完成签到,获得积分10
17秒前
迅速自行车完成签到,获得积分10
17秒前
he完成签到,获得积分20
18秒前
LiBo发布了新的文献求助10
18秒前
小虫学长应助自然的思松采纳,获得10
18秒前
戴衡霞完成签到,获得积分10
18秒前
wswddtd发布了新的文献求助10
19秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842319
求助须知:如何正确求助?哪些是违规求助? 3384417
关于积分的说明 10534630
捐赠科研通 3104925
什么是DOI,文献DOI怎么找? 1709841
邀请新用户注册赠送积分活动 823411
科研通“疑难数据库(出版商)”最低求助积分说明 774059