The prediction of potential risk path in railway traffic events

数据挖掘 计算机科学 路径(计算) 亲密度 数学 数学分析 程序设计语言
作者
Shuang Gu,Li Ke-Ping,Xingxing Zhang,Dongyang Yan,Liu Yang
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:222: 108409-108409 被引量:2
标识
DOI:10.1016/j.ress.2022.108409
摘要

• For the first time, we predict the potential risk path in railway traffic events by the heterogeneous network-based model. • In network-based risk analysis, we combine global structure, local structure and attribute information to mine the abundant semantic meanings embedded in the form of text. • We implement the multi-path search for optimal, suboptimal and valid meta-paths by adding the strategy of removing edges to the meta-path search process. • The co-occurrence and association matrices measure the closeness of the connection between two nodes. In railway traffic operation, the prediction of risk path is one of the important issues because it can ensure the potential consequences are effectively mitigated and controlled to prevent the domino effect. However, it is quite difficult to mine the potential information and investigate the complex dependency in failure text data, which makes the prediction of potential risk path challenging. In this paper, we propose a new network-based risk prediction model to investigate the propagation path of potential risk and reduce the risk of cascade failures. Three kinds of information hidden in network connections are considered: local structural information, global structural information and attribute information. The model uses the keyword extraction method of text data for data preprocessing. The breadth-first search-based algorithm is improved to identify the meta-paths. The co-occurrence matrix and the association matrix are considered to play a role in the model. In order to verify the feasibility and advantages of the model, we use a dataset consisting of traffic events in Beijing subway as a case study. Results of the comparative analysis show that the proposed model not only can effectively predict the potential risk path, but also provides the best results in terms of ROC, AUC and Precision.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hy完成签到,获得积分10
刚刚
脑洞疼应助monster采纳,获得10
1秒前
Criminology34应助饱满的问丝采纳,获得10
2秒前
2秒前
3秒前
4秒前
4秒前
zsyhcl完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
壮观的冰双完成签到,获得积分10
6秒前
正直尔白完成签到,获得积分10
7秒前
平淡的小刺猬完成签到,获得积分10
7秒前
8秒前
NY完成签到,获得积分10
8秒前
CNS天天有发布了新的文献求助10
8秒前
冬日空虚完成签到,获得积分20
8秒前
zmy发布了新的文献求助10
8秒前
一只CY完成签到,获得积分10
10秒前
10秒前
11秒前
WUT完成签到,获得积分10
12秒前
田様应助科研通管家采纳,获得10
12秒前
共享精神应助科研通管家采纳,获得10
12秒前
学习发布了新的文献求助10
12秒前
情怀应助科研通管家采纳,获得10
12秒前
Harry应助科研通管家采纳,获得10
12秒前
13秒前
星辰大海应助科研通管家采纳,获得30
13秒前
阿腾发布了新的文献求助10
13秒前
Wind应助科研通管家采纳,获得10
13秒前
彭于晏应助科研通管家采纳,获得10
13秒前
minkuuuuuuu应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得30
13秒前
Harry应助科研通管家采纳,获得10
13秒前
13秒前
英姑应助科研通管家采纳,获得10
13秒前
桐桐应助科研通管家采纳,获得10
13秒前
李爱国应助科研通管家采纳,获得10
13秒前
XDZ完成签到 ,获得积分10
13秒前
Harry应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5540103
求助须知:如何正确求助?哪些是违规求助? 4626748
关于积分的说明 14600653
捐赠科研通 4567718
什么是DOI,文献DOI怎么找? 2504136
邀请新用户注册赠送积分活动 1481880
关于科研通互助平台的介绍 1453487