The prediction of potential risk path in railway traffic events

数据挖掘 计算机科学 路径(计算) 亲密度 数学 数学分析 程序设计语言
作者
Shuang Gu,Li Ke-Ping,Xingxing Zhang,Dongyang Yan,Liu Yang
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:222: 108409-108409 被引量:2
标识
DOI:10.1016/j.ress.2022.108409
摘要

• For the first time, we predict the potential risk path in railway traffic events by the heterogeneous network-based model. • In network-based risk analysis, we combine global structure, local structure and attribute information to mine the abundant semantic meanings embedded in the form of text. • We implement the multi-path search for optimal, suboptimal and valid meta-paths by adding the strategy of removing edges to the meta-path search process. • The co-occurrence and association matrices measure the closeness of the connection between two nodes. In railway traffic operation, the prediction of risk path is one of the important issues because it can ensure the potential consequences are effectively mitigated and controlled to prevent the domino effect. However, it is quite difficult to mine the potential information and investigate the complex dependency in failure text data, which makes the prediction of potential risk path challenging. In this paper, we propose a new network-based risk prediction model to investigate the propagation path of potential risk and reduce the risk of cascade failures. Three kinds of information hidden in network connections are considered: local structural information, global structural information and attribute information. The model uses the keyword extraction method of text data for data preprocessing. The breadth-first search-based algorithm is improved to identify the meta-paths. The co-occurrence matrix and the association matrix are considered to play a role in the model. In order to verify the feasibility and advantages of the model, we use a dataset consisting of traffic events in Beijing subway as a case study. Results of the comparative analysis show that the proposed model not only can effectively predict the potential risk path, but also provides the best results in terms of ROC, AUC and Precision.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无限的半青完成签到 ,获得积分10
刚刚
丘比特应助小羊烧鸡采纳,获得10
1秒前
无名应助科研通管家采纳,获得10
1秒前
宋呵呵应助科研通管家采纳,获得10
1秒前
Return应助科研通管家采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
HOAN应助科研通管家采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得30
3秒前
婵婵完成签到,获得积分10
3秒前
3秒前
3秒前
老福贵儿应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得30
3秒前
自由白凡完成签到,获得积分10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
4秒前
打打应助科研通管家采纳,获得10
4秒前
田様应助ninomae采纳,获得10
4秒前
4秒前
雍雍完成签到 ,获得积分10
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
5秒前
纸万完成签到,获得积分10
7秒前
如意修洁完成签到 ,获得积分20
7秒前
7秒前
香蕉觅云应助浮浮世世采纳,获得10
8秒前
欣慰的小甜瓜完成签到 ,获得积分10
8秒前
9秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694691
求助须知:如何正确求助?哪些是违规求助? 5098273
关于积分的说明 15214299
捐赠科研通 4851210
什么是DOI,文献DOI怎么找? 2602193
邀请新用户注册赠送积分活动 1554073
关于科研通互助平台的介绍 1511978