已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The prediction of potential risk path in railway traffic events

数据挖掘 计算机科学 路径(计算) 亲密度 数学 数学分析 程序设计语言
作者
Shuang Gu,Li Ke-Ping,Xingxing Zhang,Dongyang Yan,Liu Yang
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:222: 108409-108409 被引量:2
标识
DOI:10.1016/j.ress.2022.108409
摘要

• For the first time, we predict the potential risk path in railway traffic events by the heterogeneous network-based model. • In network-based risk analysis, we combine global structure, local structure and attribute information to mine the abundant semantic meanings embedded in the form of text. • We implement the multi-path search for optimal, suboptimal and valid meta-paths by adding the strategy of removing edges to the meta-path search process. • The co-occurrence and association matrices measure the closeness of the connection between two nodes. In railway traffic operation, the prediction of risk path is one of the important issues because it can ensure the potential consequences are effectively mitigated and controlled to prevent the domino effect. However, it is quite difficult to mine the potential information and investigate the complex dependency in failure text data, which makes the prediction of potential risk path challenging. In this paper, we propose a new network-based risk prediction model to investigate the propagation path of potential risk and reduce the risk of cascade failures. Three kinds of information hidden in network connections are considered: local structural information, global structural information and attribute information. The model uses the keyword extraction method of text data for data preprocessing. The breadth-first search-based algorithm is improved to identify the meta-paths. The co-occurrence matrix and the association matrix are considered to play a role in the model. In order to verify the feasibility and advantages of the model, we use a dataset consisting of traffic events in Beijing subway as a case study. Results of the comparative analysis show that the proposed model not only can effectively predict the potential risk path, but also provides the best results in terms of ROC, AUC and Precision.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
haprier完成签到 ,获得积分10
5秒前
AM发布了新的文献求助30
8秒前
打打应助王冰洁采纳,获得100
10秒前
13秒前
14秒前
16秒前
大宝君发布了新的文献求助30
17秒前
19秒前
tczw667完成签到,获得积分10
20秒前
行者发布了新的文献求助10
20秒前
小章完成签到,获得积分10
21秒前
夏律发布了新的文献求助10
21秒前
22秒前
yang完成签到 ,获得积分10
22秒前
22秒前
25秒前
王冰洁发布了新的文献求助100
27秒前
吴中秋发布了新的文献求助10
27秒前
烟花应助pan采纳,获得10
27秒前
29秒前
杨同学发布了新的文献求助10
30秒前
TTT发布了新的文献求助10
31秒前
惊涛骇浪发布了新的文献求助10
34秒前
ymr完成签到 ,获得积分10
37秒前
文静听南完成签到 ,获得积分10
38秒前
39秒前
Ree完成签到,获得积分20
41秒前
Zeno完成签到 ,获得积分10
41秒前
所所应助吴中秋采纳,获得10
42秒前
asd1576562308完成签到 ,获得积分10
43秒前
欢喜的怜菡完成签到,获得积分10
43秒前
XIEYU发布了新的文献求助30
43秒前
Ree发布了新的文献求助10
47秒前
48秒前
LX有理想完成签到 ,获得积分10
49秒前
璎丸子完成签到,获得积分10
51秒前
TTT完成签到,获得积分10
51秒前
wan12138发布了新的文献求助10
53秒前
54秒前
脑洞疼应助夏律采纳,获得10
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573236
求助须知:如何正确求助?哪些是违规求助? 4659412
关于积分的说明 14724454
捐赠科研通 4599168
什么是DOI,文献DOI怎么找? 2524154
邀请新用户注册赠送积分活动 1494679
关于科研通互助平台的介绍 1464704