亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The prediction of potential risk path in railway traffic events

数据挖掘 计算机科学 路径(计算) 亲密度 数学 数学分析 程序设计语言
作者
Shuang Gu,Li Ke-Ping,Xingxing Zhang,Dongyang Yan,Liu Yang
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:222: 108409-108409 被引量:2
标识
DOI:10.1016/j.ress.2022.108409
摘要

• For the first time, we predict the potential risk path in railway traffic events by the heterogeneous network-based model. • In network-based risk analysis, we combine global structure, local structure and attribute information to mine the abundant semantic meanings embedded in the form of text. • We implement the multi-path search for optimal, suboptimal and valid meta-paths by adding the strategy of removing edges to the meta-path search process. • The co-occurrence and association matrices measure the closeness of the connection between two nodes. In railway traffic operation, the prediction of risk path is one of the important issues because it can ensure the potential consequences are effectively mitigated and controlled to prevent the domino effect. However, it is quite difficult to mine the potential information and investigate the complex dependency in failure text data, which makes the prediction of potential risk path challenging. In this paper, we propose a new network-based risk prediction model to investigate the propagation path of potential risk and reduce the risk of cascade failures. Three kinds of information hidden in network connections are considered: local structural information, global structural information and attribute information. The model uses the keyword extraction method of text data for data preprocessing. The breadth-first search-based algorithm is improved to identify the meta-paths. The co-occurrence matrix and the association matrix are considered to play a role in the model. In order to verify the feasibility and advantages of the model, we use a dataset consisting of traffic events in Beijing subway as a case study. Results of the comparative analysis show that the proposed model not only can effectively predict the potential risk path, but also provides the best results in terms of ROC, AUC and Precision.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
11秒前
江河湖库考试辅导完成签到 ,获得积分10
11秒前
13秒前
13秒前
SEAL发布了新的文献求助10
16秒前
JYY发布了新的文献求助30
19秒前
星蒲完成签到,获得积分20
22秒前
31秒前
吃瓜米吃瓜米完成签到 ,获得积分10
31秒前
氯吡格雷完成签到,获得积分10
32秒前
氯吡格雷发布了新的文献求助10
35秒前
41秒前
Jellykeke完成签到,获得积分10
42秒前
Chen发布了新的文献求助10
45秒前
52秒前
甜蜜乐松发布了新的文献求助10
59秒前
dddd完成签到 ,获得积分10
1分钟前
oMayii完成签到 ,获得积分10
1分钟前
暂无完成签到,获得积分10
1分钟前
1分钟前
jun发布了新的文献求助10
1分钟前
CYL07完成签到 ,获得积分10
1分钟前
1分钟前
光轮2000完成签到 ,获得积分10
1分钟前
Chen完成签到,获得积分10
1分钟前
yihuifa发布了新的文献求助10
1分钟前
JYY完成签到,获得积分20
1分钟前
1分钟前
剧院的饭桶完成签到,获得积分10
1分钟前
1分钟前
暂无发布了新的文献求助10
1分钟前
liuttinn发布了新的文献求助10
1分钟前
vetzlk完成签到 ,获得积分10
1分钟前
英俊的铭应助胡美玲采纳,获得10
1分钟前
kaia发布了新的文献求助10
1分钟前
CUI666完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得20
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
bkagyin应助暂无采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606551
求助须知:如何正确求助?哪些是违规求助? 4690934
关于积分的说明 14866623
捐赠科研通 4706603
什么是DOI,文献DOI怎么找? 2542754
邀请新用户注册赠送积分活动 1508160
关于科研通互助平台的介绍 1472276