The prediction of potential risk path in railway traffic events

数据挖掘 计算机科学 路径(计算) 亲密度 数学 数学分析 程序设计语言
作者
Shuang Gu,Li Ke-Ping,Xingxing Zhang,Dongyang Yan,Liu Yang
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:222: 108409-108409 被引量:2
标识
DOI:10.1016/j.ress.2022.108409
摘要

• For the first time, we predict the potential risk path in railway traffic events by the heterogeneous network-based model. • In network-based risk analysis, we combine global structure, local structure and attribute information to mine the abundant semantic meanings embedded in the form of text. • We implement the multi-path search for optimal, suboptimal and valid meta-paths by adding the strategy of removing edges to the meta-path search process. • The co-occurrence and association matrices measure the closeness of the connection between two nodes. In railway traffic operation, the prediction of risk path is one of the important issues because it can ensure the potential consequences are effectively mitigated and controlled to prevent the domino effect. However, it is quite difficult to mine the potential information and investigate the complex dependency in failure text data, which makes the prediction of potential risk path challenging. In this paper, we propose a new network-based risk prediction model to investigate the propagation path of potential risk and reduce the risk of cascade failures. Three kinds of information hidden in network connections are considered: local structural information, global structural information and attribute information. The model uses the keyword extraction method of text data for data preprocessing. The breadth-first search-based algorithm is improved to identify the meta-paths. The co-occurrence matrix and the association matrix are considered to play a role in the model. In order to verify the feasibility and advantages of the model, we use a dataset consisting of traffic events in Beijing subway as a case study. Results of the comparative analysis show that the proposed model not only can effectively predict the potential risk path, but also provides the best results in terms of ROC, AUC and Precision.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
3秒前
小柯基学从零学起完成签到 ,获得积分10
4秒前
mark完成签到,获得积分10
8秒前
边晓梅发布了新的文献求助10
9秒前
樱花糯米团完成签到 ,获得积分10
10秒前
ccc完成签到 ,获得积分10
13秒前
范白容完成签到 ,获得积分10
14秒前
煜钧完成签到,获得积分10
15秒前
学术laji完成签到 ,获得积分10
16秒前
空白完成签到 ,获得积分10
19秒前
边晓梅完成签到,获得积分20
20秒前
ange完成签到,获得积分20
21秒前
24秒前
电子屎壳郎完成签到 ,获得积分10
24秒前
不知道叫个啥完成签到 ,获得积分10
24秒前
drhwang完成签到,获得积分10
24秒前
困屁鱼完成签到 ,获得积分10
26秒前
Justtry完成签到,获得积分10
28秒前
tuanheqi应助宇文雨文采纳,获得200
29秒前
chem001完成签到,获得积分10
29秒前
yanmh完成签到,获得积分10
37秒前
Aurora完成签到 ,获得积分10
41秒前
Gary完成签到 ,获得积分10
44秒前
潇潇完成签到 ,获得积分10
47秒前
believe完成签到,获得积分10
47秒前
wenhao完成签到,获得积分10
52秒前
活泼的寒安完成签到 ,获得积分10
52秒前
四叶草完成签到 ,获得积分10
54秒前
yuyiiou完成签到 ,获得积分10
57秒前
李思雨完成签到 ,获得积分10
1分钟前
momo应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
正己化人应助科研通管家采纳,获得10
1分钟前
一路硕博应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
不倦应助科研通管家采纳,获得10
1分钟前
正己化人应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
Greg应助科研通管家采纳,获得10
1分钟前
英俊的铭应助科研通管家采纳,获得150
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498623
求助须知:如何正确求助?哪些是违规求助? 4595798
关于积分的说明 14449800
捐赠科研通 4528763
什么是DOI,文献DOI怎么找? 2481719
邀请新用户注册赠送积分活动 1465732
关于科研通互助平台的介绍 1438561