The prediction of potential risk path in railway traffic events

数据挖掘 计算机科学 路径(计算) 亲密度 数学 数学分析 程序设计语言
作者
Shuang Gu,Li Ke-Ping,Xingxing Zhang,Dongyang Yan,Liu Yang
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:222: 108409-108409 被引量:2
标识
DOI:10.1016/j.ress.2022.108409
摘要

• For the first time, we predict the potential risk path in railway traffic events by the heterogeneous network-based model. • In network-based risk analysis, we combine global structure, local structure and attribute information to mine the abundant semantic meanings embedded in the form of text. • We implement the multi-path search for optimal, suboptimal and valid meta-paths by adding the strategy of removing edges to the meta-path search process. • The co-occurrence and association matrices measure the closeness of the connection between two nodes. In railway traffic operation, the prediction of risk path is one of the important issues because it can ensure the potential consequences are effectively mitigated and controlled to prevent the domino effect. However, it is quite difficult to mine the potential information and investigate the complex dependency in failure text data, which makes the prediction of potential risk path challenging. In this paper, we propose a new network-based risk prediction model to investigate the propagation path of potential risk and reduce the risk of cascade failures. Three kinds of information hidden in network connections are considered: local structural information, global structural information and attribute information. The model uses the keyword extraction method of text data for data preprocessing. The breadth-first search-based algorithm is improved to identify the meta-paths. The co-occurrence matrix and the association matrix are considered to play a role in the model. In order to verify the feasibility and advantages of the model, we use a dataset consisting of traffic events in Beijing subway as a case study. Results of the comparative analysis show that the proposed model not only can effectively predict the potential risk path, but also provides the best results in terms of ROC, AUC and Precision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
浮游应助料峭声花采纳,获得10
1秒前
JamesPei应助明白放弃采纳,获得10
2秒前
2秒前
WWW完成签到 ,获得积分10
3秒前
酸酸给酸酸的求助进行了留言
4秒前
6秒前
6秒前
lijiauyi1994发布了新的文献求助10
7秒前
7秒前
lili完成签到,获得积分10
9秒前
Lucas应助vayne采纳,获得10
9秒前
有魅力的沧海完成签到 ,获得积分10
10秒前
科研通AI6应助地理汪汪采纳,获得10
10秒前
lll发布了新的文献求助20
11秒前
所所应助白三采纳,获得10
11秒前
xiaoyao完成签到,获得积分10
12秒前
JiuYu发布了新的文献求助10
12秒前
yang完成签到,获得积分20
12秒前
小米粥发布了新的文献求助10
14秒前
咿呀咿呀完成签到 ,获得积分10
14秒前
14秒前
15秒前
小高完成签到 ,获得积分10
18秒前
粥粥小弦应助酸酸采纳,获得20
19秒前
20秒前
21秒前
阿峤完成签到,获得积分10
24秒前
量子星尘发布了新的文献求助10
26秒前
26秒前
yang发布了新的文献求助10
26秒前
李健应助火星上的迎天采纳,获得10
27秒前
yr发布了新的文献求助10
27秒前
27秒前
领导范儿应助数学情缘采纳,获得10
28秒前
点点完成签到,获得积分10
29秒前
Damtree发布了新的文献求助10
29秒前
研友_8Qxp7Z发布了新的文献求助10
30秒前
冷静的小虾米完成签到 ,获得积分10
31秒前
英姑应助晶婷采纳,获得10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5422108
求助须知:如何正确求助?哪些是违规求助? 4537012
关于积分的说明 14155721
捐赠科研通 4453595
什么是DOI,文献DOI怎么找? 2442968
邀请新用户注册赠送积分活动 1434374
关于科研通互助平台的介绍 1411439