The prediction of potential risk path in railway traffic events

数据挖掘 计算机科学 路径(计算) 亲密度 数学 数学分析 程序设计语言
作者
Shuang Gu,Li Ke-Ping,Xingxing Zhang,Dongyang Yan,Liu Yang
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:222: 108409-108409 被引量:2
标识
DOI:10.1016/j.ress.2022.108409
摘要

• For the first time, we predict the potential risk path in railway traffic events by the heterogeneous network-based model. • In network-based risk analysis, we combine global structure, local structure and attribute information to mine the abundant semantic meanings embedded in the form of text. • We implement the multi-path search for optimal, suboptimal and valid meta-paths by adding the strategy of removing edges to the meta-path search process. • The co-occurrence and association matrices measure the closeness of the connection between two nodes. In railway traffic operation, the prediction of risk path is one of the important issues because it can ensure the potential consequences are effectively mitigated and controlled to prevent the domino effect. However, it is quite difficult to mine the potential information and investigate the complex dependency in failure text data, which makes the prediction of potential risk path challenging. In this paper, we propose a new network-based risk prediction model to investigate the propagation path of potential risk and reduce the risk of cascade failures. Three kinds of information hidden in network connections are considered: local structural information, global structural information and attribute information. The model uses the keyword extraction method of text data for data preprocessing. The breadth-first search-based algorithm is improved to identify the meta-paths. The co-occurrence matrix and the association matrix are considered to play a role in the model. In order to verify the feasibility and advantages of the model, we use a dataset consisting of traffic events in Beijing subway as a case study. Results of the comparative analysis show that the proposed model not only can effectively predict the potential risk path, but also provides the best results in terms of ROC, AUC and Precision.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
赘婿应助科研通管家采纳,获得10
2秒前
刀剑完成签到,获得积分20
2秒前
pluto应助科研通管家采纳,获得10
2秒前
2秒前
子车茗应助科研通管家采纳,获得20
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
情怀应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
pluto应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得30
3秒前
烟花应助科研通管家采纳,获得10
3秒前
pluto应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
1101592875应助科研通管家采纳,获得10
3秒前
shhoing应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
刀剑发布了新的文献求助10
6秒前
7秒前
7秒前
小二郎应助积极的夏天采纳,获得30
9秒前
123发布了新的文献求助10
11秒前
11秒前
13秒前
shaohua2011发布了新的文献求助10
13秒前
22222发布了新的文献求助10
14秒前
Charon发布了新的文献求助10
17秒前
桐桐应助ray采纳,获得10
17秒前
19秒前
qq完成签到 ,获得积分10
23秒前
哈哈哈完成签到 ,获得积分10
23秒前
24秒前
一颗蘑古力完成签到 ,获得积分10
27秒前
落尘完成签到 ,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558034
求助须知:如何正确求助?哪些是违规求助? 4642985
关于积分的说明 14670251
捐赠科研通 4584484
什么是DOI,文献DOI怎么找? 2514893
邀请新用户注册赠送积分活动 1489026
关于科研通互助平台的介绍 1459655