The prediction of potential risk path in railway traffic events

数据挖掘 计算机科学 路径(计算) 亲密度 数学 数学分析 程序设计语言
作者
Shuang Gu,Li Ke-Ping,Xingxing Zhang,Dongyang Yan,Liu Yang
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:222: 108409-108409 被引量:2
标识
DOI:10.1016/j.ress.2022.108409
摘要

• For the first time, we predict the potential risk path in railway traffic events by the heterogeneous network-based model. • In network-based risk analysis, we combine global structure, local structure and attribute information to mine the abundant semantic meanings embedded in the form of text. • We implement the multi-path search for optimal, suboptimal and valid meta-paths by adding the strategy of removing edges to the meta-path search process. • The co-occurrence and association matrices measure the closeness of the connection between two nodes. In railway traffic operation, the prediction of risk path is one of the important issues because it can ensure the potential consequences are effectively mitigated and controlled to prevent the domino effect. However, it is quite difficult to mine the potential information and investigate the complex dependency in failure text data, which makes the prediction of potential risk path challenging. In this paper, we propose a new network-based risk prediction model to investigate the propagation path of potential risk and reduce the risk of cascade failures. Three kinds of information hidden in network connections are considered: local structural information, global structural information and attribute information. The model uses the keyword extraction method of text data for data preprocessing. The breadth-first search-based algorithm is improved to identify the meta-paths. The co-occurrence matrix and the association matrix are considered to play a role in the model. In order to verify the feasibility and advantages of the model, we use a dataset consisting of traffic events in Beijing subway as a case study. Results of the comparative analysis show that the proposed model not only can effectively predict the potential risk path, but also provides the best results in terms of ROC, AUC and Precision.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LIN_YX发布了新的文献求助10
1秒前
高高断秋发布了新的文献求助10
1秒前
陈欣怡完成签到,获得积分10
1秒前
cc完成签到,获得积分20
1秒前
2秒前
LIN_YX发布了新的文献求助10
2秒前
蓝天发布了新的文献求助10
2秒前
2秒前
3秒前
小方发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
清脆的涔发布了新的文献求助10
3秒前
3秒前
3秒前
张瀚文完成签到,获得积分10
4秒前
酷波er应助菜鸟果果采纳,获得10
4秒前
yes完成签到,获得积分20
4秒前
4秒前
jnm123关注了科研通微信公众号
5秒前
林宥嘉发布了新的文献求助10
5秒前
qinswzaiyu完成签到,获得积分10
5秒前
鳄鱼完成签到,获得积分10
6秒前
陈欣怡发布了新的文献求助20
6秒前
LIN_YX发布了新的文献求助10
7秒前
wzhong发布了新的文献求助10
7秒前
LIN_YX发布了新的文献求助10
7秒前
庸人何必自扰完成签到,获得积分10
7秒前
7秒前
ableyy发布了新的文献求助10
7秒前
谢大喵发布了新的文献求助20
7秒前
xdas发布了新的文献求助30
7秒前
bkagyin应助美好的慕青采纳,获得10
8秒前
小龚发布了新的文献求助10
8秒前
科研通AI6.1应助xi采纳,获得10
8秒前
小平完成签到,获得积分10
8秒前
momo发布了新的文献求助10
8秒前
8秒前
科研通AI2S应助傻傻的寻琴采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5759707
求助须知:如何正确求助?哪些是违规求助? 5521712
关于积分的说明 15395175
捐赠科研通 4896734
什么是DOI,文献DOI怎么找? 2633863
邀请新用户注册赠送积分活动 1581925
关于科研通互助平台的介绍 1537410