Brain-Like Initial-Boosted Hyperchaos and Application in Biomedical Image Encryption

计算机科学 加密 人工智能 图像(数学) 计算机视觉 计算机网络
作者
Hairong Lin,Chunhua Wang,Li Cui,Yichuang Sun,Cong Xu,Fei Yu
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:18 (12): 8839-8850 被引量:180
标识
DOI:10.1109/tii.2022.3155599
摘要

Neural networks have been widely and deeply studied in the field of computational neurodynamics. However, coupled neural networks and their brain-like chaotic dynamics have not been noticed yet. In this article, we focus on the coupled neural network-based brain-like initial boosting coexisting hyperchaos and its application in biomedical image encryption. We first construct a memristive-coupled neural network (MCNN) model based on two subneural networks and one multistable memristor synapse. Then we investigate its coupling strength-related dynamical behaviors, initial states-related dynamical behaviors, and initial-boosted coexisting hyperchaos using bifurcation diagrams, phase portraits, Lyapunov exponents, and attraction basins. The numerical results demonstrate that the proposed MCNN not only can generate hyperchaotic attractors with high complexity but also can boost the attractor positions by switching their initial states. This makes the MCNN more suitable for many chaos-based engineering applications. Moreover, we design a biomedical image encryption scheme to explore the application of the MCNN. Performance evaluations show that the designed cryptosystem has several advantages in the keyspace, information entropy, and key sensitivity. Finally, we develop a field-programmable gate array test platform to verify the practicability of the presented MCNN and the designed medical image cryptosystem.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萧不凡完成签到,获得积分10
1秒前
1秒前
CodeCraft应助黄焖鸡米饭采纳,获得10
2秒前
桐桐应助applepie采纳,获得10
2秒前
ceeray23应助zhaoxuelian采纳,获得10
3秒前
3秒前
李健应助鹿谷波采纳,获得10
3秒前
4秒前
4秒前
5秒前
gennp完成签到,获得积分10
6秒前
壮观问寒应助漂亮的不言采纳,获得10
7秒前
YANYAN发布了新的文献求助10
8秒前
8秒前
chenren完成签到,获得积分10
9秒前
10秒前
趣多味发布了新的文献求助10
10秒前
yzzzz完成签到,获得积分10
10秒前
monere发布了新的文献求助10
10秒前
12秒前
13秒前
13秒前
14秒前
14秒前
16秒前
义气成风应助zinc采纳,获得10
16秒前
18秒前
19秒前
毛豆应助龙傲天采纳,获得10
19秒前
远航完成签到,获得积分10
20秒前
21秒前
我是老大应助科研通管家采纳,获得10
21秒前
小二郎应助科研通管家采纳,获得10
21秒前
乐乐应助科研通管家采纳,获得10
21秒前
打打应助科研通管家采纳,获得10
21秒前
21秒前
科目三应助科研通管家采纳,获得30
22秒前
爆爆应助科研通管家采纳,获得10
22秒前
英俊的铭应助科研通管家采纳,获得10
22秒前
Akim应助科研通管家采纳,获得10
22秒前
高分求助中
Востребованный временем 2500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Injection and Compression Molding Fundamentals 500
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3421767
求助须知:如何正确求助?哪些是违规求助? 3022370
关于积分的说明 8900545
捐赠科研通 2709694
什么是DOI,文献DOI怎么找? 1486011
科研通“疑难数据库(出版商)”最低求助积分说明 686950
邀请新用户注册赠送积分活动 682080