Construction and Interpretation of Prediction Model of Teicoplanin Trough Concentration via Machine Learning

替考拉宁 机器学习 人工智能 算法 计算机科学 低谷(经济学) 预测建模 遗传学 生物 宏观经济学 经济 细菌 万古霉素 金黄色葡萄球菌
作者
Pan Ma,Ruixiang Liu,Wenrui Gu,Qing Dai,Gui Yu,Jing Cen,Shenglan Shang,Fang Liu,Yongchuan Chen
出处
期刊:Frontiers in Medicine [Frontiers Media]
卷期号:9 被引量:14
标识
DOI:10.3389/fmed.2022.808969
摘要

To establish an optimal model to predict the teicoplanin trough concentrations by machine learning, and explain the feature importance in the prediction model using the SHapley Additive exPlanation (SHAP) method.A retrospective study was performed on 279 therapeutic drug monitoring (TDM) measurements obtained from 192 patients who were treated with teicoplanin intravenously at the First Affiliated Hospital of Army Medical University from November 2017 to July 2021. This study included 27 variables, and the teicoplanin trough concentrations were considered as the target variable. The whole dataset was divided into a training group and testing group at the ratio of 8:2, and predictive performance was compared among six different algorithms. Algorithms with higher model performance (top 3) were selected to establish the ensemble prediction model and SHAP was employed to interpret the model.Three algorithms (SVR, GBRT, and RF) with high R2 scores (0.676, 0.670, and 0.656, respectively) were selected to construct the ensemble model at the ratio of 6:3:1. The model with R2 = 0.720, MAE = 3.628, MSE = 22.571, absolute accuracy of 83.93%, and relative accuracy of 60.71% was obtained, which performed better in model fitting and had better prediction accuracy than any single algorithm. The feature importance and direction of each variable were visually demonstrated by SHAP values, in which teicoplanin administration and renal function were the most important factors.We firstly adopted a machine learning approach to predict the teicoplanin trough concentration, and interpreted the prediction model by the SHAP method, which is of great significance and value for the clinical medication guidance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
betterme完成签到,获得积分10
1秒前
nature24完成签到,获得积分10
1秒前
胖丁完成签到,获得积分10
1秒前
小苹果完成签到,获得积分10
2秒前
2秒前
王饱饱完成签到 ,获得积分10
3秒前
ding应助wangwenzhe采纳,获得10
3秒前
4秒前
4秒前
zoey完成签到,获得积分10
4秒前
空白完成签到,获得积分10
4秒前
威武冷雪发布了新的文献求助10
5秒前
马前人发布了新的文献求助10
5秒前
aixin完成签到,获得积分10
6秒前
mark完成签到,获得积分10
6秒前
程哲瀚完成签到,获得积分10
7秒前
朱z完成签到,获得积分10
7秒前
kkfly完成签到,获得积分10
7秒前
IIIIIIIIIIIIII完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
Dream完成签到 ,获得积分10
9秒前
yexing完成签到,获得积分10
9秒前
裘文献完成签到,获得积分10
10秒前
送外卖了完成签到,获得积分10
10秒前
祺玄发布了新的文献求助10
10秒前
111发布了新的文献求助10
10秒前
10秒前
认真丹亦完成签到 ,获得积分10
10秒前
西灵壹完成签到,获得积分10
11秒前
12秒前
无限的千凝完成签到 ,获得积分10
12秒前
13秒前
稳赚赚完成签到,获得积分10
13秒前
一夜秋风花尽落完成签到,获得积分20
13秒前
duoduo完成签到,获得积分10
14秒前
就是不签名完成签到,获得积分10
14秒前
bkagyin应助帅男采纳,获得10
14秒前
14秒前
1111完成签到,获得积分10
15秒前
欢喜小蚂蚁完成签到,获得积分10
15秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661277
求助须知:如何正确求助?哪些是违规求助? 3222314
关于积分的说明 9744806
捐赠科研通 2931943
什么是DOI,文献DOI怎么找? 1605318
邀请新用户注册赠送积分活动 757835
科研通“疑难数据库(出版商)”最低求助积分说明 734569