材料科学
涂层
腐蚀
复合材料
氮化硼
热导率
环氧树脂
热传导
热交换器
复合数
化学工程
热力学
物理
工程类
作者
Fei Xu,Meng Zhang,Yexiang Cui,Di Bao,Jianwen Peng,Yuliang Gao,Dan Lin,Haolei Geng,Yanji Zhu,Huaiyuan Wang
标识
DOI:10.1016/j.cej.2022.135660
摘要
Corrosion prevention and heat conduction are the key issues of numerous industrial equipment. Unfortunately, they are generally mutually exclusive properties for various heat exchangers-improving one capability usually causes decreased capability in another. Herein, a novel highly thermally conductive and anticorrosive coating for heat exchanger protection is reported, in which L-phenylalanine (Phe) modified boron nitride (BN) and graphene (G) sheets not only form heat conduction pathways, but also have unique multiple barrier effects. And the modified fillers exhibit improved interfacial compatibility with epoxy (EP). These factors confer the BN/G/Phe/zinc phosphate (ZP)/EP coating with a high thermal conductivity of 1.63 W/(m·K), which enhances 641% than that of EP coating (0.22 W/(m·K)), and could significantly reduce the heat transfer coefficient loss of the coated heat exchanger from 9.47% (when EP coating is coated) to 1.39% according to the theoretical calculations. Moreover, further combined with the corrosion-inhibiting film formed by ZP, the impedance modulus at 0.01 Hz of the BN/G/Phe/ZP/EP coating always maintains above 1011ohm·cm2 during 150 days of immersion in 3.5 wt% NaCl solution. The mechanism of the enhanced heat conduction and anti-corrosion performance of the coating are vividly discussed in detail. This work is of great significance to the development of new functional coatings with both high heat conduction and unique corrosion prevention capabilities.
科研通智能强力驱动
Strongly Powered by AbleSci AI