亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A cycle generative adversarial network for improving the quality of four-dimensional cone-beam computed tomography images

医学 锥束ct 霍恩斯菲尔德秤 核医学 图像质量 影像引导放射治疗 肺癌 人工智能 放射治疗 放射科 计算机断层摄影术 计算机科学 图像(数学) 内科学
作者
Keisuke Usui,K. Ogawa,Masami Goto,Yasuaki Sakano,Shinsuke Kyougoku,Hiroyuki Daida
出处
期刊:Radiation Oncology [BioMed Central]
卷期号:17 (1) 被引量:8
标识
DOI:10.1186/s13014-022-02042-1
摘要

Abstract Background Four-dimensional cone-beam computed tomography (4D-CBCT) can visualize moving tumors, thus adaptive radiation therapy (ART) could be improved if 4D-CBCT were used. However, 4D-CBCT images suffer from severe imaging artifacts. The aim of this study is to investigate the use of synthetic 4D-CBCT (sCT) images created by a cycle generative adversarial network (CycleGAN) for ART for lung cancer. Methods Unpaired thoracic 4D-CBCT images and four-dimensional multislice computed tomography (4D-MSCT) images of 20 lung-cancer patients were used for training. High-quality sCT lung images generated by the CycleGAN model were tested on another 10 cases. The mean and mean absolute errors were calculated to assess changes in the computed tomography number. The structural similarity index measure (SSIM) and peak signal-to-noise ratio (PSNR) were used to compare the sCT and original 4D-CBCT images. Moreover, a volumetric modulation arc therapy plan with a dose of 48 Gy in four fractions was recalculated using the sCT images and compared with ideal dose distributions observed in 4D-MSCT images. Results The generated sCT images had fewer artifacts, and lung tumor regions were clearly observed in the sCT images. The mean and mean absolute errors were near 0 Hounsfield units in all organ regions. The SSIM and PSNR results were significantly improved in the sCT images by approximately 51% and 18%, respectively. Moreover, the results of gamma analysis were significantly improved; the pass rate reached over 90% in the doses recalculated using the sCT images. Moreover, each organ dose index of the sCT images agreed well with those of the 4D-MSCT images and were within approximately 5%. Conclusions The proposed CycleGAN enhances the quality of 4D-CBCT images, making them comparable to 4D-MSCT images. Thus, clinical implementation of sCT-based ART for lung cancer is feasible.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KON完成签到,获得积分10
1秒前
4秒前
黎明完成签到,获得积分10
8秒前
零_完成签到,获得积分10
9秒前
负责代珊完成签到,获得积分10
10秒前
SciGPT应助123采纳,获得10
10秒前
10秒前
黎明发布了新的文献求助10
12秒前
研友_VZG7GZ应助怦然心动采纳,获得10
13秒前
领导范儿应助王老裂采纳,获得80
14秒前
16秒前
brwen完成签到,获得积分10
19秒前
dax大雄完成签到 ,获得积分10
23秒前
26秒前
28秒前
29秒前
科研通AI6应助科研通管家采纳,获得10
30秒前
浮游应助科研通管家采纳,获得30
30秒前
共享精神应助科研通管家采纳,获得10
30秒前
田様应助科研通管家采纳,获得10
30秒前
ding应助科研通管家采纳,获得10
30秒前
浮游应助科研通管家采纳,获得10
30秒前
Hello应助科研通管家采纳,获得10
30秒前
ZZZ完成签到,获得积分10
33秒前
羊羊羊发布了新的文献求助10
33秒前
歪歪吸发布了新的文献求助10
33秒前
34秒前
xiaokun发布了新的文献求助10
34秒前
123发布了新的文献求助10
34秒前
王老裂发布了新的文献求助80
39秒前
歪歪吸完成签到,获得积分10
40秒前
北一君完成签到,获得积分10
40秒前
何靖馥琳完成签到,获得积分10
45秒前
丘比特应助库里强采纳,获得10
47秒前
LJL完成签到 ,获得积分10
51秒前
yong完成签到 ,获得积分10
1分钟前
1分钟前
852应助赫贞采纳,获得10
1分钟前
1分钟前
MRu发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5185944
求助须知:如何正确求助?哪些是违规求助? 4371293
关于积分的说明 13612012
捐赠科研通 4223623
什么是DOI,文献DOI怎么找? 2316534
邀请新用户注册赠送积分活动 1315159
关于科研通互助平台的介绍 1264147