A cycle generative adversarial network for improving the quality of four-dimensional cone-beam computed tomography images

医学 锥束ct 霍恩斯菲尔德秤 核医学 图像质量 影像引导放射治疗 肺癌 人工智能 放射治疗 放射科 计算机断层摄影术 计算机科学 图像(数学) 内科学
作者
Keisuke Usui,K. Ogawa,Masami Goto,Yasuaki Sakano,Shinsuke Kyougoku,Hiroyuki Daida
出处
期刊:Radiation Oncology [Springer Nature]
卷期号:17 (1) 被引量:8
标识
DOI:10.1186/s13014-022-02042-1
摘要

Abstract Background Four-dimensional cone-beam computed tomography (4D-CBCT) can visualize moving tumors, thus adaptive radiation therapy (ART) could be improved if 4D-CBCT were used. However, 4D-CBCT images suffer from severe imaging artifacts. The aim of this study is to investigate the use of synthetic 4D-CBCT (sCT) images created by a cycle generative adversarial network (CycleGAN) for ART for lung cancer. Methods Unpaired thoracic 4D-CBCT images and four-dimensional multislice computed tomography (4D-MSCT) images of 20 lung-cancer patients were used for training. High-quality sCT lung images generated by the CycleGAN model were tested on another 10 cases. The mean and mean absolute errors were calculated to assess changes in the computed tomography number. The structural similarity index measure (SSIM) and peak signal-to-noise ratio (PSNR) were used to compare the sCT and original 4D-CBCT images. Moreover, a volumetric modulation arc therapy plan with a dose of 48 Gy in four fractions was recalculated using the sCT images and compared with ideal dose distributions observed in 4D-MSCT images. Results The generated sCT images had fewer artifacts, and lung tumor regions were clearly observed in the sCT images. The mean and mean absolute errors were near 0 Hounsfield units in all organ regions. The SSIM and PSNR results were significantly improved in the sCT images by approximately 51% and 18%, respectively. Moreover, the results of gamma analysis were significantly improved; the pass rate reached over 90% in the doses recalculated using the sCT images. Moreover, each organ dose index of the sCT images agreed well with those of the 4D-MSCT images and were within approximately 5%. Conclusions The proposed CycleGAN enhances the quality of 4D-CBCT images, making them comparable to 4D-MSCT images. Thus, clinical implementation of sCT-based ART for lung cancer is feasible.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助暴躁的安柏采纳,获得10
刚刚
刚刚
李繁蕊发布了新的文献求助10
刚刚
Evelyn关注了科研通微信公众号
1秒前
1秒前
WKY完成签到,获得积分10
2秒前
manan发布了新的文献求助10
2秒前
亮亮关注了科研通微信公众号
2秒前
yuming完成签到,获得积分10
2秒前
3秒前
Curllen完成签到,获得积分10
3秒前
lzj001983发布了新的文献求助10
3秒前
3秒前
shouyu29应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
立波完成签到,获得积分10
4秒前
4秒前
科目三应助科研通管家采纳,获得10
4秒前
思源应助科研通管家采纳,获得10
4秒前
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
ding应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
shouyu29应助科研通管家采纳,获得10
5秒前
许win应助科研通管家采纳,获得10
5秒前
华仔应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
6秒前
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
贪玩手链应助科研通管家采纳,获得10
6秒前
打打应助科研通管家采纳,获得10
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
嘎嘎顺利完成签到,获得积分10
6秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740