堆栈(抽象数据类型)
阴极
电解质
材料科学
复合数
阳极
电池(电)
核工程
容量损失
锂(药物)
电流(流体)
化学工程
复合材料
电气工程
热力学
工程类
化学
电极
功率(物理)
医学
计算机科学
物理
内分泌学
物理化学
程序设计语言
作者
Xiangwen Gao,Boyang Liu,Bingkun Hu,Ziyang Ning,Dominic Spencer Jolly,Shengming Zhang,Johann Perera,Junfu Bu,Junliang Liu,Christopher Doerrer,Ed Darnbrough,David E.J. Armstrong,Patrick S. Grant,Peter G. Bruce
出处
期刊:Joule
[Elsevier]
日期:2022-03-01
卷期号:6 (3): 636-646
被引量:61
标识
DOI:10.1016/j.joule.2022.02.008
摘要
Many studies of solid-state battery cathodes employ high stack pressures and low current densities. In practice, cells operating at current densities in the mA cm−2 range at stack pressures of a few MPa are required. Here, we show the influence of the composite cathode components LiNi0.83Mn0.06Co0.11O2, Li3InCl6, and carbon nanofibers, operating at 2-MPa stack pressure and find that the overall composite cathode capacity is determined primarily by the conductivity of the solid electrolyte. Higher conductivities reduce the mass of the solid electrolyte required to access a high capacity from the active material (high utilization), enabling higher active material loadings and higher overall capacities. Cycling between 2.6 and 4.2 V rather than 4.4 V reduces the LiNi0.83Mn0.06Co0.11O2 volume change from 6% to 2.5%, achieving 94% rather than 65% capacity retention after 50 cycles for a reduction in capacity of only 14%.
科研通智能强力驱动
Strongly Powered by AbleSci AI