Multi-service provision for electric vehicles in power-transportation networks towards a low-carbon transition: A hierarchical and hybrid multi-agent reinforcement learning approach

强化学习 灵活性(工程) 计算机科学 碳中和 服务(商务) 车辆到电网 电动汽车 工程类
作者
Dawei Qiu,Yi Wang,Mingyang Sun,Goran Strbac
出处
期刊:Applied Energy [Elsevier BV]
卷期号:313: 118790-118790
标识
DOI:10.1016/j.apenergy.2022.118790
摘要

In order to achieve the target of carbon peak and carbon neutrality, electric vehicles (EVs) have increasingly received a prominent interest to electrify the transportation sector due to their advantages of mobility and flexibility on handling complicated transportation and power networks. However, it is still challenging to realize the significant potential of EVs towards an emerging low-carbon transition. Previous works have focused on vehicle-to-grid (V2G) technology that allows for an increased utilization of EVs to make arbitrage by the temporal differentials of electricity prices. Nevertheless, the economic potential of EVs flexibility may not be fully exploited lacking an appropriate business model. This paper addresses this challenge by developing a coupled power-transportation network for cooperative EVs to optimize the provision of multiple inter-dependent services, including charging service, demand management service, carbon intensity service, and balancing service. In order to unlock this value, the EVs operation problem has already been tackled using model-based optimization approaches, which may raise privacy issues since the requirement for global information and also can be time consuming due to the high variability of transportation and power networks. In this paper, we propose a model-free hierarchical and hybrid multi-agent reinforcement learning method to learn the routing and scheduling decisions of EVs in a coupled power-transportation network with the objective of optimizing multi-service provisions. To this end, EVs do not reply on any knowledge of the simulated environment and are capable of handling system uncertainties via the learning process. Extensive case studies based on a 15-bus radial power distribution network and a 9-node 12-edge transportation network are developed to show that the proposed method outperforms the conventional learning algorithms in terms of policy quality and convergence speed. Finally, the generalizability and scalability are also investigated for different environment circumstances and EV numbers. • EVs coordination is formulated as a Decentralized Partially Observable Markov Game. • Charging, demand management, carbon intensity and up/down balancing services are considered. • A hierarchical and hybrid multi-agent reinforcement learning approach is proposed. • Transportation and power networks are captured in the simulation environment. • EVs benefit from multi-service provision and reduce renewable curtailment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ypsau发布了新的文献求助10
刚刚
小马甲应助lewu采纳,获得10
刚刚
乐乐应助同城代打采纳,获得10
刚刚
1秒前
gipsy完成签到,获得积分20
1秒前
古月完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
3秒前
Jasper应助聚合怪采纳,获得10
3秒前
赵帅关注了科研通微信公众号
3秒前
3秒前
4秒前
霸气以菱完成签到,获得积分10
4秒前
mmj发布了新的文献求助10
5秒前
壮观的擎完成签到,获得积分10
5秒前
仿生躯壳完成签到,获得积分10
5秒前
泡芙1207发布了新的文献求助10
5秒前
goodjust发布了新的文献求助10
5秒前
zx完成签到,获得积分10
5秒前
dongqing12311完成签到,获得积分10
6秒前
庄冬丽发布了新的文献求助10
6秒前
卡卡西应助枫泾采纳,获得30
7秒前
shanshan完成签到 ,获得积分10
7秒前
Derek0203发布了新的文献求助10
7秒前
cxzdm发布了新的文献求助30
7秒前
雨淋沐风完成签到,获得积分10
8秒前
8秒前
墨菲特发布了新的文献求助10
8秒前
Duqianying发布了新的文献求助20
8秒前
铝离子完成签到,获得积分10
9秒前
Akim应助欧欧拉格朗日采纳,获得10
9秒前
song发布了新的文献求助10
9秒前
碧蓝老虎完成签到,获得积分10
9秒前
9秒前
10秒前
Wesley完成签到,获得积分10
11秒前
11秒前
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Toward a Combinatorial Approach for the Prediction of IgG Half-Life and Clearance 500
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970062
求助须知:如何正确求助?哪些是违规求助? 3514782
关于积分的说明 11175968
捐赠科研通 3250119
什么是DOI,文献DOI怎么找? 1795198
邀请新用户注册赠送积分活动 875630
科研通“疑难数据库(出版商)”最低求助积分说明 804951