Multi-service provision for electric vehicles in power-transportation networks towards a low-carbon transition: A hierarchical and hybrid multi-agent reinforcement learning approach

强化学习 灵活性(工程) 计算机科学 碳中和 服务(商务) 车辆到电网 电动汽车 工程类
作者
Dawei Qiu,Yi Wang,Mingyang Sun,Goran Strbac
出处
期刊:Applied Energy [Elsevier BV]
卷期号:313: 118790-118790
标识
DOI:10.1016/j.apenergy.2022.118790
摘要

In order to achieve the target of carbon peak and carbon neutrality, electric vehicles (EVs) have increasingly received a prominent interest to electrify the transportation sector due to their advantages of mobility and flexibility on handling complicated transportation and power networks. However, it is still challenging to realize the significant potential of EVs towards an emerging low-carbon transition. Previous works have focused on vehicle-to-grid (V2G) technology that allows for an increased utilization of EVs to make arbitrage by the temporal differentials of electricity prices. Nevertheless, the economic potential of EVs flexibility may not be fully exploited lacking an appropriate business model. This paper addresses this challenge by developing a coupled power-transportation network for cooperative EVs to optimize the provision of multiple inter-dependent services, including charging service, demand management service, carbon intensity service, and balancing service. In order to unlock this value, the EVs operation problem has already been tackled using model-based optimization approaches, which may raise privacy issues since the requirement for global information and also can be time consuming due to the high variability of transportation and power networks. In this paper, we propose a model-free hierarchical and hybrid multi-agent reinforcement learning method to learn the routing and scheduling decisions of EVs in a coupled power-transportation network with the objective of optimizing multi-service provisions. To this end, EVs do not reply on any knowledge of the simulated environment and are capable of handling system uncertainties via the learning process. Extensive case studies based on a 15-bus radial power distribution network and a 9-node 12-edge transportation network are developed to show that the proposed method outperforms the conventional learning algorithms in terms of policy quality and convergence speed. Finally, the generalizability and scalability are also investigated for different environment circumstances and EV numbers. • EVs coordination is formulated as a Decentralized Partially Observable Markov Game. • Charging, demand management, carbon intensity and up/down balancing services are considered. • A hierarchical and hybrid multi-agent reinforcement learning approach is proposed. • Transportation and power networks are captured in the simulation environment. • EVs benefit from multi-service provision and reduce renewable curtailment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luffy完成签到 ,获得积分10
刚刚
wang1完成签到 ,获得积分10
2秒前
天天快乐应助元明清采纳,获得30
4秒前
lmq完成签到 ,获得积分10
5秒前
yanglinhai完成签到 ,获得积分10
7秒前
ZS完成签到,获得积分10
8秒前
Lei发布了新的文献求助10
8秒前
头发乱了发布了新的文献求助20
13秒前
Panini完成签到 ,获得积分10
13秒前
ttqql完成签到,获得积分10
13秒前
sunnyqqz完成签到,获得积分10
16秒前
19秒前
幽默赛君完成签到 ,获得积分10
19秒前
淡然以柳完成签到 ,获得积分10
19秒前
Jasper应助重庆森林采纳,获得10
23秒前
Lei完成签到,获得积分10
25秒前
酷炫觅双完成签到 ,获得积分10
26秒前
Edou完成签到,获得积分10
27秒前
烟火会翻滚完成签到,获得积分10
27秒前
38秒前
41秒前
June完成签到,获得积分10
43秒前
xz发布了新的文献求助10
45秒前
sll完成签到 ,获得积分10
47秒前
zx完成签到 ,获得积分10
47秒前
t铁核桃1985完成签到 ,获得积分10
49秒前
xzy998应助科研通管家采纳,获得10
54秒前
万能图书馆应助科研通管家采纳,获得150
54秒前
科目三应助科研通管家采纳,获得10
54秒前
完美世界应助科研通管家采纳,获得10
54秒前
科研通AI2S应助科研通管家采纳,获得10
54秒前
丘比特应助科研通管家采纳,获得10
54秒前
54秒前
MC123完成签到,获得积分10
55秒前
美好灵寒完成签到 ,获得积分10
55秒前
ESC惠子子子子子完成签到 ,获得积分10
56秒前
着急的果汁完成签到 ,获得积分10
57秒前
zz完成签到,获得积分10
1分钟前
科研通AI5应助舒心的初露采纳,获得10
1分钟前
安嫔完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5188071
求助须知:如何正确求助?哪些是违规求助? 4372504
关于积分的说明 13613427
捐赠科研通 4225688
什么是DOI,文献DOI怎么找? 2317866
邀请新用户注册赠送积分活动 1316437
关于科研通互助平台的介绍 1266095