Multi-service provision for electric vehicles in power-transportation networks towards a low-carbon transition: A hierarchical and hybrid multi-agent reinforcement learning approach

强化学习 灵活性(工程) 计算机科学 碳中和 服务(商务) 车辆到电网 电动汽车 工程类
作者
Dawei Qiu,Yi Wang,Mingyang Sun,Goran Strbac
出处
期刊:Applied Energy [Elsevier BV]
卷期号:313: 118790-118790
标识
DOI:10.1016/j.apenergy.2022.118790
摘要

In order to achieve the target of carbon peak and carbon neutrality, electric vehicles (EVs) have increasingly received a prominent interest to electrify the transportation sector due to their advantages of mobility and flexibility on handling complicated transportation and power networks. However, it is still challenging to realize the significant potential of EVs towards an emerging low-carbon transition. Previous works have focused on vehicle-to-grid (V2G) technology that allows for an increased utilization of EVs to make arbitrage by the temporal differentials of electricity prices. Nevertheless, the economic potential of EVs flexibility may not be fully exploited lacking an appropriate business model. This paper addresses this challenge by developing a coupled power-transportation network for cooperative EVs to optimize the provision of multiple inter-dependent services, including charging service, demand management service, carbon intensity service, and balancing service. In order to unlock this value, the EVs operation problem has already been tackled using model-based optimization approaches, which may raise privacy issues since the requirement for global information and also can be time consuming due to the high variability of transportation and power networks. In this paper, we propose a model-free hierarchical and hybrid multi-agent reinforcement learning method to learn the routing and scheduling decisions of EVs in a coupled power-transportation network with the objective of optimizing multi-service provisions. To this end, EVs do not reply on any knowledge of the simulated environment and are capable of handling system uncertainties via the learning process. Extensive case studies based on a 15-bus radial power distribution network and a 9-node 12-edge transportation network are developed to show that the proposed method outperforms the conventional learning algorithms in terms of policy quality and convergence speed. Finally, the generalizability and scalability are also investigated for different environment circumstances and EV numbers. • EVs coordination is formulated as a Decentralized Partially Observable Markov Game. • Charging, demand management, carbon intensity and up/down balancing services are considered. • A hierarchical and hybrid multi-agent reinforcement learning approach is proposed. • Transportation and power networks are captured in the simulation environment. • EVs benefit from multi-service provision and reduce renewable curtailment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
外向的醉易完成签到,获得积分10
1秒前
SharonDu完成签到 ,获得积分10
2秒前
3秒前
yuncong323完成签到,获得积分10
4秒前
huohuo完成签到,获得积分10
6秒前
CB完成签到,获得积分10
7秒前
7秒前
8秒前
儒雅路人完成签到,获得积分10
9秒前
OLDBLOW完成签到,获得积分10
10秒前
10秒前
liupangzi完成签到,获得积分10
10秒前
wang完成签到,获得积分10
10秒前
11秒前
Catherkk发布了新的文献求助10
11秒前
lcdamoy完成签到,获得积分10
12秒前
钱浩然发布了新的文献求助10
12秒前
烊烊发布了新的文献求助10
13秒前
十曰完成签到,获得积分10
18秒前
jjjjchou完成签到,获得积分10
19秒前
虚心的不二完成签到 ,获得积分10
21秒前
xuzj应助科研通管家采纳,获得10
22秒前
小马甲应助科研通管家采纳,获得10
22秒前
22秒前
思源应助科研通管家采纳,获得10
22秒前
22秒前
研友_VZG7GZ应助科研通管家采纳,获得10
22秒前
fang应助科研通管家采纳,获得10
22秒前
隐形曼青应助科研通管家采纳,获得10
22秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
FashionBoy应助科研通管家采纳,获得10
22秒前
shiizii应助科研通管家采纳,获得10
22秒前
24秒前
火星上的雨莲完成签到,获得积分10
28秒前
开朗的绮山发布了新的文献求助150
28秒前
平淡远山发布了新的文献求助10
29秒前
热心市民小红花应助Roman采纳,获得10
30秒前
艺术家完成签到 ,获得积分10
31秒前
研友_ngqjz8完成签到,获得积分10
32秒前
LT完成签到 ,获得积分0
33秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038235
求助须知:如何正确求助?哪些是违规求助? 3575992
关于积分的说明 11374009
捐赠科研通 3305760
什么是DOI,文献DOI怎么找? 1819276
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022