Multi-service provision for electric vehicles in power-transportation networks towards a low-carbon transition: A hierarchical and hybrid multi-agent reinforcement learning approach

强化学习 灵活性(工程) 计算机科学 碳中和 服务(商务) 车辆到电网 电动汽车 工程类
作者
Dawei Qiu,Yi Wang,Mingyang Sun,Goran Strbac
出处
期刊:Applied Energy [Elsevier]
卷期号:313: 118790-118790
标识
DOI:10.1016/j.apenergy.2022.118790
摘要

In order to achieve the target of carbon peak and carbon neutrality, electric vehicles (EVs) have increasingly received a prominent interest to electrify the transportation sector due to their advantages of mobility and flexibility on handling complicated transportation and power networks. However, it is still challenging to realize the significant potential of EVs towards an emerging low-carbon transition. Previous works have focused on vehicle-to-grid (V2G) technology that allows for an increased utilization of EVs to make arbitrage by the temporal differentials of electricity prices. Nevertheless, the economic potential of EVs flexibility may not be fully exploited lacking an appropriate business model. This paper addresses this challenge by developing a coupled power-transportation network for cooperative EVs to optimize the provision of multiple inter-dependent services, including charging service, demand management service, carbon intensity service, and balancing service. In order to unlock this value, the EVs operation problem has already been tackled using model-based optimization approaches, which may raise privacy issues since the requirement for global information and also can be time consuming due to the high variability of transportation and power networks. In this paper, we propose a model-free hierarchical and hybrid multi-agent reinforcement learning method to learn the routing and scheduling decisions of EVs in a coupled power-transportation network with the objective of optimizing multi-service provisions. To this end, EVs do not reply on any knowledge of the simulated environment and are capable of handling system uncertainties via the learning process. Extensive case studies based on a 15-bus radial power distribution network and a 9-node 12-edge transportation network are developed to show that the proposed method outperforms the conventional learning algorithms in terms of policy quality and convergence speed. Finally, the generalizability and scalability are also investigated for different environment circumstances and EV numbers. • EVs coordination is formulated as a Decentralized Partially Observable Markov Game. • Charging, demand management, carbon intensity and up/down balancing services are considered. • A hierarchical and hybrid multi-agent reinforcement learning approach is proposed. • Transportation and power networks are captured in the simulation environment. • EVs benefit from multi-service provision and reduce renewable curtailment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123发布了新的文献求助10
刚刚
刚刚
有一瓶完成签到,获得积分10
1秒前
称心砖头完成签到,获得积分10
1秒前
汉堡包应助小T儿采纳,获得10
2秒前
狂野书文完成签到,获得积分10
2秒前
爱静静应助otaro采纳,获得40
2秒前
camera发布了新的文献求助10
2秒前
3秒前
3秒前
Hu发布了新的文献求助10
3秒前
iu发布了新的文献求助10
3秒前
好了完成签到,获得积分10
4秒前
4秒前
怡然雨雪完成签到,获得积分10
4秒前
4秒前
科研通AI5应助李唯佳采纳,获得10
4秒前
万能图书馆应助祝雲采纳,获得10
4秒前
我爱学习完成签到 ,获得积分10
5秒前
111完成签到,获得积分10
5秒前
可乐要加冰完成签到,获得积分10
5秒前
深情安青应助郑开司09采纳,获得10
6秒前
娜行发布了新的文献求助10
6秒前
Auoroa完成签到,获得积分10
6秒前
明智之举完成签到,获得积分10
7秒前
赵赵完成签到,获得积分10
7秒前
共享精神应助lalala采纳,获得10
7秒前
Hello应助hf采纳,获得10
7秒前
7秒前
豆丁完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
鹿友菌完成签到,获得积分10
10秒前
皮克斯完成签到 ,获得积分10
10秒前
黑米粥发布了新的文献求助10
10秒前
iu完成签到,获得积分10
10秒前
脑洞疼应助KX采纳,获得10
10秒前
大模型应助艺玲采纳,获得10
11秒前
ZXD完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672