Multi-service provision for electric vehicles in power-transportation networks towards a low-carbon transition: A hierarchical and hybrid multi-agent reinforcement learning approach

强化学习 灵活性(工程) 计算机科学 碳中和 服务(商务) 车辆到电网 电动汽车 工程类
作者
Dawei Qiu,Yi Wang,Mingyang Sun,Goran Strbac
出处
期刊:Applied Energy [Elsevier]
卷期号:313: 118790-118790
标识
DOI:10.1016/j.apenergy.2022.118790
摘要

In order to achieve the target of carbon peak and carbon neutrality, electric vehicles (EVs) have increasingly received a prominent interest to electrify the transportation sector due to their advantages of mobility and flexibility on handling complicated transportation and power networks. However, it is still challenging to realize the significant potential of EVs towards an emerging low-carbon transition. Previous works have focused on vehicle-to-grid (V2G) technology that allows for an increased utilization of EVs to make arbitrage by the temporal differentials of electricity prices. Nevertheless, the economic potential of EVs flexibility may not be fully exploited lacking an appropriate business model. This paper addresses this challenge by developing a coupled power-transportation network for cooperative EVs to optimize the provision of multiple inter-dependent services, including charging service, demand management service, carbon intensity service, and balancing service. In order to unlock this value, the EVs operation problem has already been tackled using model-based optimization approaches, which may raise privacy issues since the requirement for global information and also can be time consuming due to the high variability of transportation and power networks. In this paper, we propose a model-free hierarchical and hybrid multi-agent reinforcement learning method to learn the routing and scheduling decisions of EVs in a coupled power-transportation network with the objective of optimizing multi-service provisions. To this end, EVs do not reply on any knowledge of the simulated environment and are capable of handling system uncertainties via the learning process. Extensive case studies based on a 15-bus radial power distribution network and a 9-node 12-edge transportation network are developed to show that the proposed method outperforms the conventional learning algorithms in terms of policy quality and convergence speed. Finally, the generalizability and scalability are also investigated for different environment circumstances and EV numbers. • EVs coordination is formulated as a Decentralized Partially Observable Markov Game. • Charging, demand management, carbon intensity and up/down balancing services are considered. • A hierarchical and hybrid multi-agent reinforcement learning approach is proposed. • Transportation and power networks are captured in the simulation environment. • EVs benefit from multi-service provision and reduce renewable curtailment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助单纯的柚子采纳,获得10
刚刚
曹梓聪完成签到,获得积分10
刚刚
慕青应助受伤的擎宇采纳,获得10
1秒前
Grace完成签到,获得积分10
1秒前
SciGPT应助qian采纳,获得20
1秒前
1秒前
常尽欢完成签到 ,获得积分10
2秒前
rayan完成签到,获得积分10
3秒前
大恩区完成签到,获得积分10
3秒前
3秒前
我不吃发布了新的文献求助10
3秒前
芊芊完成签到 ,获得积分0
4秒前
Niaobo完成签到,获得积分10
4秒前
胡大嘴先生完成签到,获得积分10
5秒前
LZH发布了新的文献求助10
5秒前
6秒前
还活着发布了新的文献求助10
7秒前
Yoki完成签到,获得积分10
8秒前
kkk完成签到,获得积分20
8秒前
清秀含羞草完成签到,获得积分10
9秒前
zsyhcl应助风筝采纳,获得10
10秒前
热心的十二完成签到 ,获得积分10
10秒前
燕燕于飞完成签到,获得积分10
11秒前
香蕉觅云应助水123采纳,获得10
12秒前
合适尔风完成签到,获得积分10
12秒前
隐形曼青应助王瑞采纳,获得10
12秒前
nako7575完成签到,获得积分10
13秒前
心想事成完成签到 ,获得积分0
14秒前
彭于晏应助LZH采纳,获得10
14秒前
14秒前
英俊的铭应助cui采纳,获得10
16秒前
ldkshifo完成签到,获得积分10
16秒前
yoyo20012623完成签到,获得积分10
17秒前
17秒前
123完成签到,获得积分10
18秒前
Liuruijia完成签到 ,获得积分10
18秒前
上官若男应助孙嘉畯采纳,获得10
18秒前
18秒前
Jupiter完成签到,获得积分10
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603665
求助须知:如何正确求助?哪些是违规求助? 4688648
关于积分的说明 14855380
捐赠科研通 4694577
什么是DOI,文献DOI怎么找? 2540936
邀请新用户注册赠送积分活动 1507124
关于科研通互助平台的介绍 1471814