已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-service provision for electric vehicles in power-transportation networks towards a low-carbon transition: A hierarchical and hybrid multi-agent reinforcement learning approach

强化学习 灵活性(工程) 计算机科学 碳中和 服务(商务) 车辆到电网 电动汽车 工程类
作者
Dawei Qiu,Yi Wang,Mingyang Sun,Goran Strbac
出处
期刊:Applied Energy [Elsevier]
卷期号:313: 118790-118790
标识
DOI:10.1016/j.apenergy.2022.118790
摘要

In order to achieve the target of carbon peak and carbon neutrality, electric vehicles (EVs) have increasingly received a prominent interest to electrify the transportation sector due to their advantages of mobility and flexibility on handling complicated transportation and power networks. However, it is still challenging to realize the significant potential of EVs towards an emerging low-carbon transition. Previous works have focused on vehicle-to-grid (V2G) technology that allows for an increased utilization of EVs to make arbitrage by the temporal differentials of electricity prices. Nevertheless, the economic potential of EVs flexibility may not be fully exploited lacking an appropriate business model. This paper addresses this challenge by developing a coupled power-transportation network for cooperative EVs to optimize the provision of multiple inter-dependent services, including charging service, demand management service, carbon intensity service, and balancing service. In order to unlock this value, the EVs operation problem has already been tackled using model-based optimization approaches, which may raise privacy issues since the requirement for global information and also can be time consuming due to the high variability of transportation and power networks. In this paper, we propose a model-free hierarchical and hybrid multi-agent reinforcement learning method to learn the routing and scheduling decisions of EVs in a coupled power-transportation network with the objective of optimizing multi-service provisions. To this end, EVs do not reply on any knowledge of the simulated environment and are capable of handling system uncertainties via the learning process. Extensive case studies based on a 15-bus radial power distribution network and a 9-node 12-edge transportation network are developed to show that the proposed method outperforms the conventional learning algorithms in terms of policy quality and convergence speed. Finally, the generalizability and scalability are also investigated for different environment circumstances and EV numbers. • EVs coordination is formulated as a Decentralized Partially Observable Markov Game. • Charging, demand management, carbon intensity and up/down balancing services are considered. • A hierarchical and hybrid multi-agent reinforcement learning approach is proposed. • Transportation and power networks are captured in the simulation environment. • EVs benefit from multi-service provision and reduce renewable curtailment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助大气的寻桃采纳,获得10
1秒前
wab完成签到,获得积分0
2秒前
2秒前
JamesPei应助nykal采纳,获得10
4秒前
小号完成签到,获得积分10
6秒前
7秒前
甜甜完成签到 ,获得积分10
7秒前
天天快乐应助www采纳,获得10
8秒前
F123456完成签到 ,获得积分10
11秒前
11秒前
灵巧汉堡发布了新的文献求助10
13秒前
14秒前
15秒前
15秒前
16秒前
18秒前
character577发布了新的文献求助10
20秒前
羡阳完成签到 ,获得积分10
21秒前
21秒前
mzr发布了新的文献求助10
21秒前
领导范儿应助flysky120采纳,获得200
23秒前
24秒前
24秒前
ppw完成签到,获得积分10
24秒前
拖把丶发布了新的文献求助10
25秒前
28秒前
nykal发布了新的文献求助10
30秒前
30秒前
大模型应助HY采纳,获得10
30秒前
伊倾发布了新的文献求助10
31秒前
菠萝披萨发布了新的文献求助10
32秒前
好久不见发布了新的文献求助10
34秒前
慕青应助chrissylaiiii采纳,获得10
34秒前
37秒前
虹虹完成签到 ,获得积分10
40秒前
rnf完成签到,获得积分10
40秒前
娜扎发布了新的文献求助10
44秒前
45秒前
华仔应助123采纳,获得10
45秒前
46秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Pearson Edxecel IGCSE English Language B 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142377
求助须知:如何正确求助?哪些是违规求助? 2793285
关于积分的说明 7806265
捐赠科研通 2449541
什么是DOI,文献DOI怎么找? 1303349
科研通“疑难数据库(出版商)”最低求助积分说明 626823
版权声明 601300