亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Translational organoid technology – the convergence of chemical, mechanical, and computational biology

类有机物 计算机科学 计算生物学 翻译(生物学) 纳米技术 生物 细胞生物学 信使核糖核酸 材料科学 生物化学 基因
作者
Weijie Zhang,Jiawei Li,Jiaqi Zhou,Abhay Rastogi,Shaohua Ma
出处
期刊:Trends in Biotechnology [Elsevier]
卷期号:40 (9): 1121-1135 被引量:14
标识
DOI:10.1016/j.tibtech.2022.03.003
摘要

The physical and mechanical features of extracellular materials and the spatiotemporal patterns of exogenous stimulation regulate cell behaviors and play pivotal roles in organoid development. Chemically defined media and scaffolding materials improve organoid reproducibility, but conditioned media and nature-derived materials hold promise in facilitating wider applications of organoids. Advances in engineering are increasingly being applied to organoid technology and to understanding the chemical, physical, and mechanical rules that govern cell signaling and organoid development. In many cases organoids are being evaluated by non-deep-learning algorithms because of limitations in the size and variance of training data and the challenge of data labeling. Successful clinical translation of organoid technology requires insights that extend beyond biology and biochemistry, notably from the fields of mechanical and computational biology. This review highlights recent advances in the organoid field that could potentially accelerate translation. We first review organoid fabrication methods, focusing on engineering approaches that increase organoid reproducibility, controllability, and production ability, as well as the physical conditions, culture media, and extracellular materials that regulate cell signaling and mechanotransduction. We then review computation-based organoid evaluation, including both information acquisition and data mining. Finally, we summarize the limitations of current advances and application horizons as well as the perspective of digital organoids. Successful clinical translation of organoid technology requires insights that extend beyond biology and biochemistry, notably from the fields of mechanical and computational biology. This review highlights recent advances in the organoid field that could potentially accelerate translation. We first review organoid fabrication methods, focusing on engineering approaches that increase organoid reproducibility, controllability, and production ability, as well as the physical conditions, culture media, and extracellular materials that regulate cell signaling and mechanotransduction. We then review computation-based organoid evaluation, including both information acquisition and data mining. Finally, we summarize the limitations of current advances and application horizons as well as the perspective of digital organoids. a short motif that mediates integrin interactions with its ligand proteins. It plays a key role in tumor angiogenesis, metastasis, and growth. formulations that mimic the ECM for cell culture purposes. a customized droplet-based microfluidics system for ultra-soft microgel fabrication and manipulation under surfactant-free conditions. The system is composed of multiple pieces of plastic tubing of identical lumen size that are sequentially connected with zero dead volume. stem cells derived from the undifferentiated inner mass cells of blastocysts. They are capable of self-renewal and can differentiate into all cell types of the body. the non-cellular component present within all tissues and organs which provides not only essential physical scaffolding for the cellular constituents but also initiates the crucial biochemical and biomechanical cues that are required for tissue morphogenesis, differentiation, and homeostasis. a photopolymerizable hydrogel composed of chemically treated collagen for use in tissue engineering applications. stem cells obtained by reprogramming of adult somatic cells, which regain the capacity for unlimited self-renewal and differentiation into multiple cell types. a family of highly homologous Zn2+-dependent endopeptidases that collectively cleave most if not all of ECM constituents. the approach of exposing pluripotent stem cells to signaling gradients that mimic developmental patterning. self-organized 3D organoids that are derived from isolated tissues of patient-derived xenografts. a nontoxic water-soluble fusogen that is commonly used in biological products. a technique in which RNA reverse transcription is followed by PCR amplification of the cDNA. the ratio of the intensity of a signal (meaningful information) to the intensity of background noise (self-generated signal during processing).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
20秒前
文章多多完成签到,获得积分10
20秒前
Jason完成签到,获得积分10
25秒前
Una完成签到,获得积分10
31秒前
orixero应助科研通管家采纳,获得10
51秒前
共享精神应助科研通管家采纳,获得10
51秒前
56秒前
香菜张完成签到,获得积分10
1分钟前
席江海完成签到 ,获得积分10
1分钟前
1分钟前
曦耀发布了新的文献求助10
1分钟前
1分钟前
zhjl发布了新的文献求助10
1分钟前
wangfaqing942完成签到 ,获得积分10
1分钟前
2分钟前
c138zyx发布了新的文献求助10
2分钟前
2分钟前
科目三应助科研通管家采纳,获得10
2分钟前
JamesPei应助科研通管家采纳,获得10
2分钟前
2分钟前
3分钟前
3分钟前
ZYP发布了新的文献求助10
3分钟前
3分钟前
呜呜吴完成签到,获得积分10
3分钟前
善学以致用应助ss采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
zxin完成签到 ,获得积分10
5分钟前
袁青寒完成签到,获得积分10
5分钟前
Chouvikin完成签到,获得积分10
5分钟前
小伙子完成签到,获得积分10
5分钟前
ZYP发布了新的文献求助10
5分钟前
Augustines完成签到,获得积分10
5分钟前
histamin完成签到,获得积分10
6分钟前
lsh完成签到,获得积分10
6分钟前
6分钟前
大力完成签到 ,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639719
求助须知:如何正确求助?哪些是违规求助? 4749971
关于积分的说明 15007221
捐赠科研通 4797866
什么是DOI,文献DOI怎么找? 2563996
邀请新用户注册赠送积分活动 1522864
关于科研通互助平台的介绍 1482529