亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Translational organoid technology – the convergence of chemical, mechanical, and computational biology

类有机物 计算机科学 计算生物学 翻译(生物学) 纳米技术 生物 细胞生物学 信使核糖核酸 材料科学 生物化学 基因
作者
Weijie Zhang,Jiawei Li,Jiaqi Zhou,Abhay Rastogi,Shaohua Ma
出处
期刊:Trends in Biotechnology [Elsevier BV]
卷期号:40 (9): 1121-1135 被引量:12
标识
DOI:10.1016/j.tibtech.2022.03.003
摘要

The physical and mechanical features of extracellular materials and the spatiotemporal patterns of exogenous stimulation regulate cell behaviors and play pivotal roles in organoid development. Chemically defined media and scaffolding materials improve organoid reproducibility, but conditioned media and nature-derived materials hold promise in facilitating wider applications of organoids. Advances in engineering are increasingly being applied to organoid technology and to understanding the chemical, physical, and mechanical rules that govern cell signaling and organoid development. In many cases organoids are being evaluated by non-deep-learning algorithms because of limitations in the size and variance of training data and the challenge of data labeling. Successful clinical translation of organoid technology requires insights that extend beyond biology and biochemistry, notably from the fields of mechanical and computational biology. This review highlights recent advances in the organoid field that could potentially accelerate translation. We first review organoid fabrication methods, focusing on engineering approaches that increase organoid reproducibility, controllability, and production ability, as well as the physical conditions, culture media, and extracellular materials that regulate cell signaling and mechanotransduction. We then review computation-based organoid evaluation, including both information acquisition and data mining. Finally, we summarize the limitations of current advances and application horizons as well as the perspective of digital organoids. Successful clinical translation of organoid technology requires insights that extend beyond biology and biochemistry, notably from the fields of mechanical and computational biology. This review highlights recent advances in the organoid field that could potentially accelerate translation. We first review organoid fabrication methods, focusing on engineering approaches that increase organoid reproducibility, controllability, and production ability, as well as the physical conditions, culture media, and extracellular materials that regulate cell signaling and mechanotransduction. We then review computation-based organoid evaluation, including both information acquisition and data mining. Finally, we summarize the limitations of current advances and application horizons as well as the perspective of digital organoids. a short motif that mediates integrin interactions with its ligand proteins. It plays a key role in tumor angiogenesis, metastasis, and growth. formulations that mimic the ECM for cell culture purposes. a customized droplet-based microfluidics system for ultra-soft microgel fabrication and manipulation under surfactant-free conditions. The system is composed of multiple pieces of plastic tubing of identical lumen size that are sequentially connected with zero dead volume. stem cells derived from the undifferentiated inner mass cells of blastocysts. They are capable of self-renewal and can differentiate into all cell types of the body. the non-cellular component present within all tissues and organs which provides not only essential physical scaffolding for the cellular constituents but also initiates the crucial biochemical and biomechanical cues that are required for tissue morphogenesis, differentiation, and homeostasis. a photopolymerizable hydrogel composed of chemically treated collagen for use in tissue engineering applications. stem cells obtained by reprogramming of adult somatic cells, which regain the capacity for unlimited self-renewal and differentiation into multiple cell types. a family of highly homologous Zn2+-dependent endopeptidases that collectively cleave most if not all of ECM constituents. the approach of exposing pluripotent stem cells to signaling gradients that mimic developmental patterning. self-organized 3D organoids that are derived from isolated tissues of patient-derived xenografts. a nontoxic water-soluble fusogen that is commonly used in biological products. a technique in which RNA reverse transcription is followed by PCR amplification of the cDNA. the ratio of the intensity of a signal (meaningful information) to the intensity of background noise (self-generated signal during processing).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助guolong采纳,获得10
7秒前
喬老師完成签到,获得积分10
7秒前
8秒前
研友_59AB85发布了新的文献求助10
15秒前
番茄黄瓜芝士片完成签到 ,获得积分10
17秒前
宣灵薇完成签到,获得积分0
21秒前
在水一方应助研友_59AB85采纳,获得10
28秒前
研友_59AB85完成签到,获得积分10
34秒前
hanatae完成签到,获得积分10
34秒前
39秒前
云木完成签到 ,获得积分10
40秒前
量子星尘发布了新的文献求助10
52秒前
55秒前
Yina完成签到 ,获得积分10
55秒前
lcw完成签到 ,获得积分10
1分钟前
Sandy应助科研通管家采纳,获得20
1分钟前
FashionBoy应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
cc应助科研通管家采纳,获得20
1分钟前
IfItheonlyone完成签到 ,获得积分10
1分钟前
沙脑完成签到 ,获得积分10
1分钟前
皮尔特桃仔完成签到,获得积分10
1分钟前
clhoxvpze完成签到 ,获得积分10
1分钟前
努力搞科研完成签到,获得积分10
1分钟前
1分钟前
研友_ZGRvon完成签到,获得积分0
1分钟前
Nuyoah发布了新的文献求助10
1分钟前
1分钟前
1分钟前
菜根谭完成签到 ,获得积分10
1分钟前
Shelly悦888发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
2分钟前
Nuyoah完成签到,获得积分10
2分钟前
可爱的函函应助高兴凡儿采纳,获得10
2分钟前
HY发布了新的文献求助10
2分钟前
小吴完成签到,获得积分10
2分钟前
学不完了完成签到 ,获得积分10
2分钟前
2分钟前
李婧薇发布了新的文献求助10
2分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960007
求助须知:如何正确求助?哪些是违规求助? 3506216
关于积分的说明 11128438
捐赠科研通 3238221
什么是DOI,文献DOI怎么找? 1789577
邀请新用户注册赠送积分活动 871829
科研通“疑难数据库(出版商)”最低求助积分说明 803056