Sleep staging classification based on a new parallel fusion method of multiple sources signals

睡眠阶段 多导睡眠图 计算机科学 人工智能 模式识别(心理学) 特征提取 睡眠(系统调用) 心率变异性 自回归模型 样本熵 语音识别 数据挖掘 脑电图 医学 统计 数学 心率 放射科 精神科 操作系统 血压
作者
Yafang Hei,Tuming Yuan,Zhigao Fan,Yang Bo,Jiancheng Hu
出处
期刊:Physiological Measurement [IOP Publishing]
卷期号:43 (4): 045003-045003 被引量:4
标识
DOI:10.1088/1361-6579/ac647b
摘要

Objective.In the field of medical informatics, sleep staging is a challenging and time consuming task undertaken by sleep experts. The conventional method for sleep staging is to analyze Polysomnograms (PSGs) recorded in a sleep lab, but the sleep monitoring with polysomnography (PSG) severely degrades the sleep quality. Despite recent significant progress in the development of automatic sleep staging methods, building a good model still remains a big challenge for sleep studies due to the data-variability and data-inefficiency issues. Electrooculograms (EOGs) and electrocardiograms (ECGs) and are much easier to record and may offer an attractive alternative for home sleep monitoring. PSGs from the Sleep Heart Health Study database were used. This study aims to establish an new automatic sleep staging algorithm by using electrooculogram (EOG) and electrocardiogram (ECG).Approach.First, the heart rate variability (HRV) is extracted from EOG with the Weight Calculation Algorithm and an 'NRRD' RR interval detection algorithm. Second, three feature sets were extracted from HRV segments and EOG segments: time-domain features, frequency-domain features and nonlinear-domain features. The frequency domain features and nonlinear-domain features were extracted by using Discrete Wavelet Transform, Autoregressive (AR), and Power Spectral entropy, and Refined Composite Multiscale Dispersion Entropy. Third, a new 'Parallel Fusion Method' (PFM) for sleep stage classification is proposed. Three kinds of feature sets from EOG and HRV segments are fused by using PFM. Fourth, Extreme Gradient Boosting (XGBoost) is employed for sleep staging.Main results.Our experimental results show significant performance improvement on automatic sleep staging on the target domains achieved with the new sleep staging approach. The performance of the proposed method is tested by evaluating the average accuracy, Kappa coefficient. The average accuracy of sleep classification results by using XGBoost classification model with PFM is 83% and the kappa coefficient is 0.7. Experimental results show that the performance of the proposed method is competitive with the most current methods and results, and the recognition rate of S1 stage is significantly improved.Significance.As a consequence, it would enable one to improve the quality of automatic sleep staging models when the EOG and HRV signals are fused, which can be beneficial for monitor sleep quality and keep abreast of health conditions. Besides, our study provides good research ideas and methods for scholars, doctors and individuals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
独特亦旋完成签到,获得积分20
3秒前
今后应助qqqqqq采纳,获得10
4秒前
小马甲应助飞羽采纳,获得10
4秒前
星辰大海应助西内!卡Q因采纳,获得10
5秒前
5秒前
彬彬发布了新的文献求助10
6秒前
太叔捕完成签到,获得积分10
6秒前
高磊发布了新的文献求助10
7秒前
RH完成签到,获得积分10
7秒前
zhangzhen完成签到,获得积分10
7秒前
8秒前
科研通AI2S应助zfzf0422采纳,获得10
10秒前
Wendy1204发布了新的文献求助10
11秒前
11秒前
lydy1993完成签到,获得积分10
12秒前
13秒前
滴滴哒哒完成签到 ,获得积分10
13秒前
SciGPT应助波波玛奇朵采纳,获得10
15秒前
戏言121完成签到,获得积分10
15秒前
迷人的映雁完成签到,获得积分10
16秒前
16秒前
美丽的之双完成签到,获得积分10
17秒前
阿会完成签到,获得积分10
17秒前
wqm完成签到,获得积分10
18秒前
戏言121发布了新的文献求助10
19秒前
19秒前
20秒前
优雅的流沙完成签到 ,获得积分10
21秒前
猫的海完成签到,获得积分10
21秒前
21秒前
Eason Liu完成签到,获得积分0
22秒前
Wendy1204完成签到,获得积分20
22秒前
Hello应助654采纳,获得10
22秒前
咩咩羊完成签到,获得积分10
22秒前
26秒前
lianqing完成签到,获得积分10
26秒前
汉堡包应助科研通管家采纳,获得10
26秒前
领导范儿应助科研通管家采纳,获得10
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824