MGDCF: Distance Learning via Markov Graph Diffusion for Neural Collaborative Filtering

计算机科学 协同过滤 隐马尔可夫模型 人工智能 马尔可夫过程 机器学习 马尔可夫链 图形 背景(考古学) 马尔可夫模型 理论计算机科学 推荐系统 数据挖掘 数学 古生物学 统计 生物
作者
Jun Hu,Bryan Hooi,Shengsheng Qian,Changsheng Xu,Changsheng Xu
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:36 (7): 3281-3296 被引量:11
标识
DOI:10.1109/tkde.2023.3348537
摘要

Graph Neural Networks (GNNs) have recently been utilized to build Collaborative Filtering (CF) models to predict user preferences based on historical user-item interactions. However, there is relatively little understanding of how GNN-based CF models relate to some traditional Network Representation Learning (NRL) approaches. In this paper, we show the equivalence between some state-of-the-art GNN-based CF models and a traditional 1-layer NRL model based on context encoding. Based on a Markov process that trades off two types of distances, we present Markov Graph Diffusion Collaborative Filtering (MGDCF) to generalize some state-of-the-art GNN-based CF models. Instead of considering the GNN as a trainable black box that propagates learnable user/item vertex embeddings, we treat GNNs as an untrainable Markov process that can construct constant context features of vertices for a traditional NRL model that encodes context features with a fully-connected layer. Such simplification can help us to better understand how GNNs benefit CF models. Especially, it helps us realize that ranking losses play crucial roles in GNN-based CF tasks. With our proposed simple yet powerful ranking loss InfoBPR, the NRL model can still perform well without the context features constructed by GNNs. We conduct experiments to perform detailed analysis on MGDCF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
1秒前
1秒前
1223发布了新的文献求助10
1秒前
MinSheng完成签到,获得积分10
2秒前
2秒前
2秒前
芝芝椰奶冻完成签到,获得积分10
2秒前
科目三应助Motanka采纳,获得10
3秒前
微客发布了新的文献求助10
4秒前
Sisyphus发布了新的文献求助10
4秒前
苹果夜梦完成签到 ,获得积分10
4秒前
4秒前
ll完成签到,获得积分20
4秒前
毅雅发布了新的文献求助10
5秒前
5秒前
深情安青应助麻吉麻鸡采纳,获得10
5秒前
ZHOUZHEN完成签到,获得积分10
6秒前
xxr发布了新的文献求助10
6秒前
影子完成签到 ,获得积分10
6秒前
6秒前
小肥仔发布了新的文献求助10
7秒前
典雅的俊驰应助EVEN采纳,获得10
7秒前
丘比特应助Claire_zzz采纳,获得10
8秒前
李健应助真实的跳跳糖采纳,获得10
8秒前
YOUng关注了科研通微信公众号
8秒前
小鹿关注了科研通微信公众号
9秒前
yz完成签到,获得积分10
9秒前
长风发布了新的文献求助10
9秒前
momo发布了新的文献求助10
10秒前
jessie发布了新的文献求助10
10秒前
斯文败类应助Li采纳,获得30
11秒前
脆脆鲨发布了新的文献求助10
12秒前
充电宝应助uui采纳,获得10
12秒前
Owen应助心海微澜采纳,获得10
13秒前
13秒前
duan完成签到,获得积分10
14秒前
混子完成签到,获得积分10
14秒前
大何完成签到,获得积分10
14秒前
毅雅完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4940451
求助须知:如何正确求助?哪些是违规求助? 4206580
关于积分的说明 13074753
捐赠科研通 3985154
什么是DOI,文献DOI怎么找? 2182031
邀请新用户注册赠送积分活动 1197696
关于科研通互助平台的介绍 1110012