Ultrahigh Performance Sono-Piezoelectric Nanocomposites Enhanced by Interfacial Coupling Effects for the Implantable Nanogenerators and Actuator

压电 材料科学 执行机构 纳米复合材料 联轴节(管道) 纳米发生器 声学 复合材料 光电子学 纳米技术 电气工程 工程类 物理
作者
Yingxin Chen,Guowei Yang,Jingchao Shi,Ning Zhu,Lei Zhang,Yao Ni,Qiyun Guo,Yuxiang Wang,Yan Wang,Liu Hon,Jian Zhang
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
标识
DOI:10.2139/ssrn.4076905
摘要

Transcutaneous energy harvesting technology based on ultrasound-driven piezoelectric nanocomposites/nanogenerators is the most promising one in medical and industrial application. Based on ultrasonic coupling effects at the interfaces, interfacial architecture is critical parameter to attain desirable electromechanical properties of the nanocomposites. Herein, we successfully synthesized a core-conductive shell structured BaTiO 3 @Carbon [BT@Carbon] nanoparticles [NPs] as nanofillers to design an implantable poly(vinylidenefluoride-co-chlorotrifluoroethylene)/BT@Carbon [P(VDF-CTFE)/BT@Carbon] piezoelectric nanogenerators (PENGs) and actuators for harvesting ultrasound underneath the skin. Firstly, BT@Carbon NPs as heterogeneous nucleators can accelerate the crystallization rate of the nanocomposite and form small lamellae of crystals, which is beneficial for reducing the energy barrier of dipoles switching under ultrasound (US) stimulation. Secondly, a conductive carbon-shell interface between BT and P(VDF-CTFE) matrix is beneficial for charge generation, separation and transfer performance at the interfaces under US stimulation. Remarkably, P(VDF-CTFE)/BT@Carbon peizoelectric nanogenerators attain high tissue penetration up to ~5 cm in the pork and a maximum output power 626 μ W/cm 2 under ultrasound stimulation, which is far larger than that of force-induced PVDF-based nanogenerators. Finally, US-PENG sensing system, which is composed of an amplifier and a microcontroller, can efficiently convert ultrasonic energy to electricity and thus can switch on/off small electronics in the tissue. Our systematic findings pave a new avenue to develop for wireless power and actuators for medical implant devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
孙奕发布了新的文献求助10
1秒前
xiaotian_fan完成签到,获得积分10
1秒前
3秒前
3秒前
科研通AI2S应助laochen采纳,获得10
3秒前
盘尼西林发布了新的文献求助10
3秒前
迟大猫应助专心搞学术采纳,获得10
4秒前
6秒前
孙奕完成签到,获得积分10
7秒前
7秒前
俟天晴完成签到,获得积分10
7秒前
淡定问芙发布了新的文献求助30
8秒前
10秒前
Lewis完成签到,获得积分10
11秒前
orixero应助TranYan采纳,获得10
11秒前
猪猪hero发布了新的文献求助10
13秒前
14秒前
今后应助333采纳,获得10
15秒前
pu发布了新的文献求助10
16秒前
Akim应助梓榆采纳,获得10
17秒前
劼大大完成签到,获得积分10
17秒前
最优解完成签到 ,获得积分20
18秒前
18秒前
通~发布了新的文献求助10
18秒前
一段乐多完成签到,获得积分10
19秒前
19秒前
19秒前
给我找完成签到,获得积分10
20秒前
桐桐应助Yuki0616采纳,获得10
20秒前
小马甲应助鸣隐采纳,获得10
20秒前
ycd完成签到,获得积分10
21秒前
ark861023完成签到,获得积分10
21秒前
淡定问芙完成签到,获得积分10
21秒前
斯文败类应助惠惠采纳,获得10
22秒前
22秒前
Meowly完成签到,获得积分10
22秒前
23秒前
23秒前
陶醉觅夏发布了新的文献求助10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794