Estimates of resting energy expenditure and total energy expenditure using predictive equations in adults with overweight and obesity: a systematic review with meta-analysis

超重 肥胖 荟萃分析 体质指数 出版偏见 医学 背景(考古学) 统计的 人口学 统计 数学 内科学 生物 社会学 古生物学
作者
Mateus de Lima Macêna,Déborah Tenório da Costa Paula,André Eduardo da Silva Júnior,Dafiny Rodrigues Silva Praxedes,Isabele Rejane de Oliveira Maranhão Pureza,Ingrid Sofia Vieira de Melo,Nassib Bezerra Bueno
出处
期刊:Nutrition Reviews [Oxford University Press]
卷期号:80 (11): 2113-2135 被引量:18
标识
DOI:10.1093/nutrit/nuac031
摘要

Abstract Context Energy expenditure predictive equations can generate inaccurate estimates for overweight or obese individuals. Objective The objective of this review was to determine which predictive equations for resting energy expenditure (REE) and total energy expenditure (TEE) have the lowest bias and the highest precision in adults with overweight and obesity. Data Sources Searches were performed in January 2022 in MEDLINE, Web of Science, Scopus, CENTRAL, and the gray literature databases. Data Extraction Meta-analyses were performed with equations included in more than 1 study. The DerSimonian and Laird random-effects model and the I2 statistic were used to quantify heterogeneity in the quantitative analyses. The Egger test was performed to assess potential publication biases, and metaregressions were conducted to explore the heterogeneity. Findings were presented separated by participants’ body mass index classification (overweight and obesity). Data Analysis Sixty-one studies were included. The FAO/WHO/UNU (1985) equation, which uses only body weight in its formula, showed the lowest bias in estimating REE (mean difference [MD] = 8.97 kcal; 95% CI = –26.99; 44.94). In the subgroup analysis for individuals with obesity, the Lazzer (2007) equation showed the lowest bias (MD = 4.70 kcal; 95% CI = –95.45; 104.86). The Harris–Benedict equation (1919) showed the highest precision values for individuals with overweight (60.65%) and for individuals with obesity (62.54%). Equations with body composition data showed the highest biases. The equation proposed by the Institute of Medicine (2005) showed the lowest bias (MD = –2.52 kcal; 95% CI = –125.94; 120.90) in estimating the TEE. Most analyses showed high heterogeneity (I2 > 90%). There was no evidence of publication bias. Conclusion For individuals with overweight, the FAO/WHO/UNU (1985) and the Harris–Benedict equations (1919) showed the lowest bias and the highest precision in predicting the REE, respectively. For individuals with obesity, the Harris–Benedict equation (1919) showed the highest precision and the Lazzer equation (2007) showed the lowest bias. More studies are needed on predictive equations to estimate the TEE. Systematic Review Registration PROSPERO registration no. CRD42021262969.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助xumou采纳,获得200
1秒前
SMIRTGIRL完成签到,获得积分10
1秒前
我wwww发布了新的文献求助10
1秒前
宜醉宜游宜睡应助尺八采纳,获得10
2秒前
zs_123完成签到,获得积分10
5秒前
呵呵贺哈完成签到 ,获得积分10
7秒前
jansorchen完成签到,获得积分10
7秒前
7秒前
Hello应助孑孑采纳,获得10
8秒前
醉了完成签到,获得积分20
8秒前
默默易梦发布了新的文献求助10
9秒前
树枝完成签到,获得积分10
10秒前
Luo发布了新的文献求助10
10秒前
11秒前
美丽晓蓝完成签到,获得积分10
12秒前
杰森斯坦虎完成签到,获得积分10
13秒前
14秒前
15秒前
abc发布了新的文献求助10
15秒前
zs_123发布了新的文献求助20
16秒前
16秒前
李健应助坚强凝安采纳,获得10
17秒前
搜集达人应助美丽晓蓝采纳,获得10
19秒前
上官若男应助忧伤的觅珍采纳,获得30
20秒前
殷超完成签到,获得积分0
20秒前
个性的傲安完成签到,获得积分10
21秒前
21秒前
21秒前
清爽的凤完成签到,获得积分10
21秒前
22秒前
22秒前
xia完成签到,获得积分10
24秒前
直率无春完成签到,获得积分10
25秒前
空白发布了新的文献求助10
26秒前
丘比特应助科研通管家采纳,获得10
27秒前
科研小民工应助科研通管家采纳,获得200
27秒前
ding应助科研通管家采纳,获得30
27秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
科研通AI5应助科研通管家采纳,获得10
28秒前
仙人掌发布了新的文献求助10
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3540746
求助须知:如何正确求助?哪些是违规求助? 3117999
关于积分的说明 9333534
捐赠科研通 2815888
什么是DOI,文献DOI怎么找? 1547832
邀请新用户注册赠送积分活动 721175
科研通“疑难数据库(出版商)”最低求助积分说明 712578