作者
Celso F. Balthazar,Jonas F. Guimarães,Nathália M. Coutinho,Tatiana Colombo Pimentel,Chaminda Senaka Ranadheera,Antonella Santillo,Marzia Albenzio,Adriano G. Cruz,Anderson S. Sant’Ana
摘要
This review was the first to gather literature about the effect of emerging technologies on probiotic, prebiotic, and postbiotic products. Applying emerging technologies to probiotic products can increase probiotic survival and improve probiotic properties (cholesterol attachment, adhesion to Caco-2 cells, increase angiotensin-converting enzyme (ACE) inhibitory, antioxidant, and antimicrobial activities, and decrease systolic blood pressure). Furthermore, it can optimize the fermentation process, produce or maintain compounds of interest (bacteriocin, oligosaccharides, peptides, phenolic compounds, flavonoids), improve bioactivity (vitamin, aglycones, calcium), and sensory characteristics. Applying emerging technologies to prebiotic products did not result in prebiotic degradation. Still, it contributed to higher concentrations of bioactive compounds (citric and ascorbic acids, anthocyanin, polyphenols, flavonoids) and health properties (antioxidant activity and inhibition of ACE, α-amylase, and α-glucosidase). Emerging technologies may also be applied to obtain postbiotics with increased health effects. In this way, current studies suggest that emerging food processing technologies enhance the efficiency of probiotics and prebiotics in food. The information provided may help food industries to choose a more suitable technology to process their products and provide a basis for the most used process parameters. Furthermore, the current gaps are discussed. Emerging technologies may be used to process food products resulting in increased probiotic functionality, prebiotic stability, and higher concentrations of bioactive compounds. In addition, they can be used to obtain postbiotic products with improved health effects compared to the conventional heat treatment.