A Fast Clustering Based Evolutionary Algorithm for Super-Large-Scale Sparse Multi-Objective Optimization

维数之咒 聚类分析 计算机科学 进化算法 算法 数学优化 分布估计算法 数学 人工智能
作者
Ye Tian,Yuandong Feng,Xingyi Zhang,Changyin Sun
出处
期刊:IEEE/CAA Journal of Automatica Sinica [Institute of Electrical and Electronics Engineers]
卷期号:10 (4): 1048-1063 被引量:36
标识
DOI:10.1109/jas.2022.105437
摘要

During the last three decades, evolutionary algorithms (EAs) have shown superiority in solving complex optimization problems, especially those with multiple objectives and non-differentiable landscapes. However, due to the stochastic search strategies, the performance of most EAs deteriorates drastically when handling a large number of decision variables. To tackle the curse of dimensionality, this work proposes an efficient EA for solving super-large-scale multi-objective optimization problems with sparse optimal solutions. The proposed algorithm estimates the sparse distribution of optimal solutions by optimizing a binary vector for each solution, and provides a fast clustering method to highly reduce the dimensionality of the search space. More importantly, all the operations related to the decision variables only contain several matrix calculations, which can be directly accelerated by GPUs. While existing EAs are capable of handling fewer than 10 000 real variables, the proposed algorithm is verified to be effective in handling 1 000 000 real variables. Furthermore, since the proposed algorithm handles the large number of variables via accelerated matrix calculations, its runtime can be reduced to less than 10% of the runtime of existing EAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不懈奋进应助nz采纳,获得30
刚刚
刚刚
大气乘风发布了新的文献求助10
1秒前
昵称发布了新的文献求助10
1秒前
林大侠发布了新的文献求助10
2秒前
Atom完成签到 ,获得积分10
2秒前
燃尔完成签到 ,获得积分10
2秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
4秒前
Hello应助啦啦啦采纳,获得10
4秒前
4秒前
5秒前
6秒前
搜集达人应助全若之采纳,获得10
6秒前
6秒前
xiangeyedu发布了新的文献求助10
7秒前
7秒前
SaqLa完成签到,获得积分10
7秒前
HXY发布了新的文献求助30
8秒前
华仔应助晨晨采纳,获得30
9秒前
科目三应助小卫采纳,获得10
9秒前
内向雨南完成签到,获得积分10
10秒前
zgliu78完成签到,获得积分10
10秒前
思源应助zhaosh采纳,获得10
11秒前
11秒前
小马甲应助第八维采纳,获得30
12秒前
贺呵呵发布了新的文献求助10
12秒前
12秒前
酷波er应助HSD采纳,获得10
12秒前
12秒前
Dasiliy完成签到,获得积分10
12秒前
桐桐应助叁金采纳,获得30
13秒前
13秒前
领导范儿应助啦啦啦采纳,获得10
13秒前
汉堡包应助明理乐珍采纳,获得20
14秒前
14秒前
14秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979122
求助须知:如何正确求助?哪些是违规求助? 3522967
关于积分的说明 11215682
捐赠科研通 3260436
什么是DOI,文献DOI怎么找? 1799990
邀请新用户注册赠送积分活动 878770
科研通“疑难数据库(出版商)”最低求助积分说明 807061