Improving Accuracy and Convergence in Group-Based Federated Learning on Non-IID Data

计算机科学 趋同(经济学) 群(周期表) GSM演进的增强数据速率 机制(生物学) 数据挖掘 人工智能 机器学习 分布式计算 经济增长 认识论 哲学 经济 有机化学 化学
作者
Ziqi He,Lei Yang,Wanyu Lin,Weigang Wu
出处
期刊:IEEE Transactions on Network Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:10 (3): 1389-1404 被引量:13
标识
DOI:10.1109/tnse.2022.3163279
摘要

Federated learning (FL) enables a large number of edge devices to learn a shared model without data sharing collaboratively. However, the imbalanced data distribution among users poses challenges to the convergence performance of FL. Group-based FL is a novel framework to improve FL performance, which appropriately groups users and allows localized aggregations within the group before a global aggregation. Nevertheless, most existing Group-based FL methods are K-means-based approaches that need to explicitly specify the number of groups, which may severely reduce the efficacy and optimality of the proposed solutions. In this paper, we propose a grouping mechanism called Auto-Group, which can automatically group users without specifying the number of groups. Specifically, various grouping strategies with different numbers of groups are generated with our mechanism. In particular, equipped with an optimized Genetic Algorithm, Auto-Group ensures that the data distribution of each group is similar to the global distribution, further reducing the communication delay. We conduct extensive experiments in various settings to evaluate Auto-Group. Experimental results show that, compared with the baselines, our mechanism can significantly improve the model accuracy while accelerating the training speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
AKLIZE完成签到,获得积分10
1秒前
朴实老黑完成签到 ,获得积分10
1秒前
聪明凌柏完成签到 ,获得积分10
2秒前
3秒前
5秒前
6秒前
Qkk完成签到,获得积分10
6秒前
Hello应助334niubi666采纳,获得10
6秒前
7秒前
zhaozhao完成签到,获得积分10
8秒前
orixero应助txkahy采纳,获得10
10秒前
xkirei完成签到,获得积分10
10秒前
iShine发布了新的文献求助10
10秒前
10秒前
10秒前
龙虾侠完成签到,获得积分10
12秒前
丰知然应助科研通管家采纳,获得10
14秒前
CipherSage应助科研通管家采纳,获得10
14秒前
汉堡包应助科研通管家采纳,获得10
14秒前
丰知然应助科研通管家采纳,获得10
14秒前
丰知然应助科研通管家采纳,获得10
14秒前
丰知然应助科研通管家采纳,获得10
14秒前
丰知然应助科研通管家采纳,获得10
15秒前
领导范儿应助重要的小夏采纳,获得10
15秒前
Hello应助科研通管家采纳,获得10
15秒前
共享精神应助科研通管家采纳,获得10
15秒前
丰知然应助科研通管家采纳,获得10
15秒前
JamesPei应助科研通管家采纳,获得10
15秒前
15秒前
所所应助科研通管家采纳,获得10
15秒前
能干的茗发布了新的文献求助10
15秒前
yemiao发布了新的文献求助10
15秒前
19秒前
CUI给热心从凝的求助进行了留言
20秒前
葵花籽完成签到,获得积分10
20秒前
悟空的豹纹裙完成签到,获得积分10
22秒前
24秒前
334niubi666发布了新的文献求助10
24秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308459
求助须知:如何正确求助?哪些是违规求助? 2941791
关于积分的说明 8505743
捐赠科研通 2616655
什么是DOI,文献DOI怎么找? 1429755
科研通“疑难数据库(出版商)”最低求助积分说明 663888
邀请新用户注册赠送积分活动 648928