Fast Unsupervised Feature Selection with Bipartite Graph and l2,0-Norm Constraint

计算机科学 二部图 特征选择 人工智能 模式识别(心理学) 图形 算法 理论计算机科学
作者
Hong Chen,Feiping Nie,Rong Wang,Xuelong Li
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tkde.2022.3146403
摘要

Since obtaining data labels is a time-consuming and laborious task, unsupervised feature selection has become a popular feature selection technique. However, the current unsupervised feature selection methods are facing three challenges: (1) they rely on a fixed similarity matrix derived from the original data, which will affect their performance; (2) due to the limitation of sparsity, they can only obtain sub-optimal solutions; (3) they have high computational complexity and cannot handle large-scale data. To solve this dilemma, we propose a fast unsupervised feature selection algorithm with bipartite graph and 2;0-norm constraint (BGCFS). We use the original data and the selected anchors to construct an adaptive bipartite graph in the subspace, and apply the l2,0-norm constraint to the projection matrix for feature selection. In this way, we can update the adaptive bipartite graph and the projection matrix simultaneously, and we can get the feature subset directly, without sorting the features. In addition, we propose an iterative algorithm that can solve the proposed problem globally to obtain a closed-form solution, and we provide a strict proof of convergence for it. Experiments on eight real data sets with different scales show that our method can select more valuable feature subsets more quickly
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Adeline发布了新的文献求助30
1秒前
188的浩完成签到 ,获得积分10
1秒前
2秒前
小二郎应助李小汁采纳,获得10
5秒前
7秒前
电磁很快学会应助Linyi采纳,获得10
7秒前
小蘑菇应助公孙世往采纳,获得10
8秒前
鲸落完成签到 ,获得积分10
12秒前
13秒前
Cheney完成签到 ,获得积分10
14秒前
尽如完成签到,获得积分10
16秒前
李小汁发布了新的文献求助10
17秒前
dnmd完成签到,获得积分10
17秒前
外向半青完成签到,获得积分20
19秒前
liu95完成签到 ,获得积分10
19秒前
LC完成签到,获得积分10
29秒前
壮壮女士完成签到,获得积分10
30秒前
32秒前
32秒前
BBQ完成签到,获得积分20
34秒前
cccyc完成签到,获得积分10
35秒前
36秒前
zhj发布了新的文献求助10
37秒前
BBQ发布了新的文献求助10
38秒前
科目三应助麻薯头头采纳,获得10
39秒前
楼亦玉完成签到,获得积分10
39秒前
weiwei04314发布了新的文献求助10
41秒前
42秒前
Lucas应助会撒娇的冷亦采纳,获得10
43秒前
感动的银耳汤完成签到,获得积分10
43秒前
科研通AI2S应助JJ采纳,获得10
44秒前
希望天下0贩的0应助Spark采纳,获得10
47秒前
48秒前
小二郎应助BBQ采纳,获得30
48秒前
50秒前
搜集达人应助Mrmiss666采纳,获得10
51秒前
奇奇吃面发布了新的文献求助10
51秒前
52秒前
小新小新发布了新的文献求助10
54秒前
xiaosu发布了新的文献求助10
55秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137575
求助须知:如何正确求助?哪些是违规求助? 2788520
关于积分的说明 7787428
捐赠科研通 2444861
什么是DOI,文献DOI怎么找? 1300110
科研通“疑难数据库(出版商)”最低求助积分说明 625813
版权声明 601023