Contribution of the Initially Entangled State and Particle Size to the Sintering Kinetics of UHMWPE

量子纠缠 粒子(生态学) 融合 W州 材料科学 相(物质) 烧结 化学物理 复合材料 物理 量子 量子力学 语言学 海洋学 地质学 哲学
作者
Handing Wang,Xiang Yan,Xin Tang,Yulong Ma,Xiaoqiang Fan,Wei Li,Wei Yu,Jingdai Wang,Yongrong Yang
出处
期刊:Macromolecules [American Chemical Society]
卷期号:55 (4): 1310-1320 被引量:31
标识
DOI:10.1021/acs.macromol.1c02058
摘要

Nascent particles of ultrahigh-molecular-weight polyethylene (UHMWPE) with different entangled states and particle sizes have been processed by means of sintering. The chain entanglement formation of the sintered UHMWPE was investigated using a small-amplitude oscillatory shear measurement, where the contribution of the initially entangled state and particle size to the entanglement formation of long chains was addressed. The chain dynamics of the bulk phase and interfacial phase in the particles was calculated based on the McLeish theory to quantitatively address the contribution of the particle size and entangled state to the entanglement formation. The mechanical properties were then well explained based on the entanglement formation across interfaces. The motion of long chains was restrained by a large number of physically entangled points in the highly entangled domains, which limited the interfacial chain fusion and entanglement formation. In this case, small particles promoted chain diffusion and particle fusion owing to the large specific area for welding. The heterogeneously distributed entanglement in the less entangled UHMWPE enhanced the motion of chain segments, leading to rapid entanglement formation throughout the interfaces, especially in small particles. Therefore, a very short sintering time (5 min) was enough to make the fine particles reach the thermally stable state, exhibiting excellent mechanical properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
Ava应助NGU采纳,获得10
刚刚
xiaopihaier完成签到,获得积分10
2秒前
3秒前
好久发布了新的文献求助10
3秒前
研友_VZG7GZ应助lijingyi采纳,获得10
3秒前
4秒前
机灵班应助zwk采纳,获得10
4秒前
shan完成签到,获得积分10
4秒前
Ava应助gtflbk采纳,获得10
4秒前
兔子发布了新的文献求助10
5秒前
不见高山完成签到,获得积分10
6秒前
8秒前
绵绵发布了新的文献求助10
8秒前
zyun完成签到,获得积分10
9秒前
务实的绮山完成签到,获得积分10
9秒前
10秒前
gjw应助呜呼啦呼采纳,获得10
10秒前
王王完成签到 ,获得积分10
10秒前
10秒前
蘑菇小象完成签到 ,获得积分10
11秒前
12秒前
张原铭发布了新的文献求助10
13秒前
14秒前
FashionBoy应助自觉的小凝采纳,获得10
14秒前
NGU发布了新的文献求助10
16秒前
16秒前
16秒前
我不ins你_完成签到,获得积分10
18秒前
19秒前
dajiejie发布了新的文献求助10
19秒前
BINGBING1230发布了新的文献求助10
20秒前
22秒前
田様应助高超采纳,获得10
23秒前
23秒前
24秒前
小任同学要努力完成签到 ,获得积分10
25秒前
桐桐应助研友_ZMH采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5297298
求助须知:如何正确求助?哪些是违规求助? 4446207
关于积分的说明 13838799
捐赠科研通 4331371
什么是DOI,文献DOI怎么找? 2377578
邀请新用户注册赠送积分活动 1372834
关于科研通互助平台的介绍 1338403