Synthetic Time of Flight Magnetic Resonance Angiography Generation Model Based on Cycle‐Consistent Generative Adversarial Network Using PETRA‐MRA in the Patients With Treated Intracranial Aneurysm

医学 图像质量 麦克内马尔试验 接收机工作特性 动脉瘤 磁共振成像 放射科 计算机科学 人工智能 核医学 算法 数学 图像(数学) 统计 内科学
作者
Sung‐Hye You,Yongwon Cho,Byungjun Kim,Kyung‐Sook Yang,Bo Kyu Kim,Sang Eun Park
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:56 (5): 1513-1528 被引量:5
标识
DOI:10.1002/jmri.28114
摘要

Background Pointwise encoding time reduction with radial acquisition (PETRA) magnetic resonance angiography (MRA) is useful for evaluating intracranial aneurysm recurrence, but the problem of severe background noise and low peripheral signal‐to‐noise ratio (SNR) remain. Deep learning could reduce noise using high‐ and low‐quality images. Purpose To develop a cycle‐consistent generative adversarial network (cycleGAN)‐based deep learning model to generate synthetic TOF (synTOF) using PETRA. Study type Retrospective. Population A total of 377 patients (mean age: 60 ± 11; 293 females) with treated intracranial aneurysms who underwent both PETRA and TOF from October 2017 to January 2021. Data were randomly divided into training (49.9%, 188/377) and validation (50.1%, 189/377) groups. Field Strength/Sequence Ultra‐short echo time and TOF‐MRA on a 3‐T MR system. Assessment For the cycleGAN model, the peak SNR (PSNR) and structural similarity (SSIM) were evaluated. Image quality was compared qualitatively (5‐point Likert scale) and quantitatively (SNR). A multireader diagnostic optimality evaluation was performed with 17 radiologists (experience of 1–18 years). Statistical Tests Generalized estimating equation analysis, Friedman's test, McNemar test, and Spearman's rank correlation. P < 0.05 indicated statistical significance. Results The PSNR and SSIM between synTOF and TOF were 17.51 [16.76; 18.31] dB and 0.71 ± 0.02. The median values of overall image quality, noise, sharpness, and vascular conspicuity were significantly higher for synTOF than for PETRA (4.00 [4.00; 5.00] vs. 4.00 [3.00; 4.00]; 5.00 [4.00; 5.00] vs. 3.00 [2.00; 4.00]; 4.00 [4.00; 4.00] vs. 4.00 [3.00; 4.00]; 3.00 [3.00; 4.00] vs. 3.00 [2.00; 3.00]). The SNRs of the middle cerebral arteries were the highest for synTOF (synTOF vs. TOF vs. PETRA; 63.67 [43.25; 105.00] vs. 52.42 [32.88; 74.67] vs. 21.05 [12.34; 37.88]). In the multireader evaluation, there was no significant difference in diagnostic optimality or preference between synTOF and TOF (19.00 [18.00; 19.00] vs. 20.00 [18.00; 20.00], P = 0.510; 8.00 [6.00; 11.00] vs. 11.00 [9.00, 14.00], P = 1.000). Data Conclusion The cycleGAN‐based deep learning model provided synTOF free from background artifact. The synTOF could be a versatile alternative to TOF in patients who have undergone PETRA for evaluating treated aneurysms. Evidence Level 4 Technical Efficacy Stage 1
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助喜悦的哇采纳,获得10
刚刚
Owen应助李阿吉采纳,获得10
刚刚
英姑应助啧啧啧采纳,获得10
刚刚
刚刚
1秒前
整齐以亦完成签到,获得积分10
1秒前
2秒前
Hello应助要开心吖采纳,获得10
2秒前
李nb发布了新的文献求助10
3秒前
林子发布了新的文献求助10
4秒前
潇洒荧荧关注了科研通微信公众号
4秒前
huoxiaoyu发布了新的文献求助10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
望舒发布了新的文献求助10
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
馆长应助arran1111采纳,获得10
7秒前
大模型应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得20
7秒前
minminzi应助科研通管家采纳,获得10
7秒前
1111应助科研通管家采纳,获得10
7秒前
zhang应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得30
8秒前
minminzi应助科研通管家采纳,获得10
8秒前
锦念完成签到,获得积分10
8秒前
8秒前
minminzi应助科研通管家采纳,获得10
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
在水一方应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得30
9秒前
9秒前
9秒前
9秒前
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4907561
求助须知:如何正确求助?哪些是违规求助? 4184583
关于积分的说明 12994551
捐赠科研通 3951050
什么是DOI,文献DOI怎么找? 2166785
邀请新用户注册赠送积分活动 1185368
关于科研通互助平台的介绍 1091793