Synthetic Time of Flight Magnetic Resonance Angiography Generation Model Based on Cycle‐Consistent Generative Adversarial Network Using PETRA‐MRA in the Patients With Treated Intracranial Aneurysm

医学 图像质量 麦克内马尔试验 接收机工作特性 动脉瘤 磁共振成像 放射科 计算机科学 人工智能 核医学 算法 数学 图像(数学) 统计 内科学
作者
Sung‐Hye You,Yongwon Cho,Byungjun Kim,Kyung‐Sook Yang,Bo Kyu Kim,Sang Eun Park
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:56 (5): 1513-1528 被引量:5
标识
DOI:10.1002/jmri.28114
摘要

Background Pointwise encoding time reduction with radial acquisition (PETRA) magnetic resonance angiography (MRA) is useful for evaluating intracranial aneurysm recurrence, but the problem of severe background noise and low peripheral signal‐to‐noise ratio (SNR) remain. Deep learning could reduce noise using high‐ and low‐quality images. Purpose To develop a cycle‐consistent generative adversarial network (cycleGAN)‐based deep learning model to generate synthetic TOF (synTOF) using PETRA. Study type Retrospective. Population A total of 377 patients (mean age: 60 ± 11; 293 females) with treated intracranial aneurysms who underwent both PETRA and TOF from October 2017 to January 2021. Data were randomly divided into training (49.9%, 188/377) and validation (50.1%, 189/377) groups. Field Strength/Sequence Ultra‐short echo time and TOF‐MRA on a 3‐T MR system. Assessment For the cycleGAN model, the peak SNR (PSNR) and structural similarity (SSIM) were evaluated. Image quality was compared qualitatively (5‐point Likert scale) and quantitatively (SNR). A multireader diagnostic optimality evaluation was performed with 17 radiologists (experience of 1–18 years). Statistical Tests Generalized estimating equation analysis, Friedman's test, McNemar test, and Spearman's rank correlation. P < 0.05 indicated statistical significance. Results The PSNR and SSIM between synTOF and TOF were 17.51 [16.76; 18.31] dB and 0.71 ± 0.02. The median values of overall image quality, noise, sharpness, and vascular conspicuity were significantly higher for synTOF than for PETRA (4.00 [4.00; 5.00] vs. 4.00 [3.00; 4.00]; 5.00 [4.00; 5.00] vs. 3.00 [2.00; 4.00]; 4.00 [4.00; 4.00] vs. 4.00 [3.00; 4.00]; 3.00 [3.00; 4.00] vs. 3.00 [2.00; 3.00]). The SNRs of the middle cerebral arteries were the highest for synTOF (synTOF vs. TOF vs. PETRA; 63.67 [43.25; 105.00] vs. 52.42 [32.88; 74.67] vs. 21.05 [12.34; 37.88]). In the multireader evaluation, there was no significant difference in diagnostic optimality or preference between synTOF and TOF (19.00 [18.00; 19.00] vs. 20.00 [18.00; 20.00], P = 0.510; 8.00 [6.00; 11.00] vs. 11.00 [9.00, 14.00], P = 1.000). Data Conclusion The cycleGAN‐based deep learning model provided synTOF free from background artifact. The synTOF could be a versatile alternative to TOF in patients who have undergone PETRA for evaluating treated aneurysms. Evidence Level 4 Technical Efficacy Stage 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FD完成签到,获得积分10
1秒前
遇见多欢喜完成签到,获得积分10
1秒前
2秒前
leiyuekai完成签到,获得积分10
2秒前
Tiger完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
caitSith发布了新的文献求助10
4秒前
6秒前
在水一方应助胡图图采纳,获得10
6秒前
leiyuekai发布了新的文献求助10
6秒前
屿鑫完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
Jian完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
JJ索发布了新的文献求助10
11秒前
科目三应助yutian采纳,获得10
12秒前
SI完成签到 ,获得积分10
12秒前
多情雨灵发布了新的文献求助10
12秒前
玉玉完成签到,获得积分10
13秒前
sa发布了新的文献求助10
13秒前
冷傲的罡发布了新的文献求助10
14秒前
Jian发布了新的文献求助10
14秒前
越越发布了新的文献求助10
15秒前
15秒前
17秒前
pancake发布了新的文献求助30
17秒前
17秒前
17秒前
cicytjsxjr发布了新的文献求助10
18秒前
科研通AI6.1应助娜娜采纳,获得10
18秒前
风汐5423完成签到,获得积分10
19秒前
22秒前
hotongue发布了新的文献求助10
23秒前
24秒前
Criminology34应助JJ索采纳,获得10
26秒前
安详发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742086
求助须知:如何正确求助?哪些是违规求助? 5405647
关于积分的说明 15343886
捐赠科研通 4883555
什么是DOI,文献DOI怎么找? 2625085
邀请新用户注册赠送积分活动 1573951
关于科研通互助平台的介绍 1530896