Visible-Infrared Person Re-Identification: A Comprehensive Survey and a New Setting

计算机科学 鉴定(生物学) 模式 人工智能 不相交集 深度学习 数据科学 机器学习 数学 社会科学 植物 生物 组合数学 社会学
作者
Huantao Zheng,Xian Zhong,Wenxin Huang,Kui Jiang,Wenxuan Liu,Zheng Wang
出处
期刊:Electronics [MDPI AG]
卷期号:11 (3): 454-454 被引量:8
标识
DOI:10.3390/electronics11030454
摘要

Person re-identification (ReID) plays a crucial role in video surveillance with the aim to search a specific person across disjoint cameras, and it has progressed notably in recent years. However, visible cameras may not be able to record enough information about the pedestrian’s appearance under the condition of low illumination. On the contrary, thermal infrared images can significantly mitigate this issue. To this end, combining visible images with infrared images is a natural trend, and are considerably heterogeneous modalities. Some attempts have recently been contributed to visible-infrared person re-identification (VI-ReID). This paper provides a complete overview of current VI-ReID approaches that employ deep learning algorithms. To align with the practical application scenarios, we first propose a new testing setting and systematically evaluate state-of-the-art methods based on our new setting. Then, we compare ReID with VI-ReID in three aspects, including data composition, challenges, and performance. According to the summary of previous work, we classify the existing methods into two categories. Additionally, we elaborate on frequently used datasets and metrics for performance evaluation. We give insights on the historical development and conclude the limitations of off-the-shelf methods. We finally discuss the future directions of VI-ReID that the community should further address.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhw297完成签到,获得积分10
刚刚
1秒前
1秒前
liudi123456完成签到,获得积分10
1秒前
1秒前
zar完成签到,获得积分10
1秒前
1秒前
Jasper应助梦中偶遇山寨采纳,获得10
2秒前
fazat发布了新的文献求助10
4秒前
4秒前
小鱼发布了新的文献求助10
5秒前
6秒前
贺华关注了科研通微信公众号
6秒前
7秒前
WUYANG发布了新的文献求助10
7秒前
nesta627发布了新的文献求助10
7秒前
7秒前
8秒前
丑丑阿发布了新的文献求助10
8秒前
8秒前
梦中偶遇山寨完成签到,获得积分20
9秒前
10秒前
10秒前
科研通AI2S应助WUHUIWEN采纳,获得10
10秒前
Qinghua应助W_G采纳,获得50
10秒前
脑洞疼应助木几木几采纳,获得10
10秒前
11秒前
一只鱼发布了新的文献求助10
11秒前
摆烂好爽发布了新的文献求助10
13秒前
凯迪发布了新的文献求助30
13秒前
烟花应助达da采纳,获得10
13秒前
14秒前
ziyue应助Son4904采纳,获得10
14秒前
14秒前
谢文强完成签到,获得积分10
16秒前
程院发布了新的文献求助10
16秒前
SHL完成签到,获得积分10
16秒前
fazat完成签到,获得积分10
18秒前
长情的初瑶完成签到,获得积分10
18秒前
19秒前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
Write Like a Chemist: A Guide and Resource (第二版) 600
Mixed-anion Compounds 600
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Earth System Geophysics 500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3200134
求助须知:如何正确求助?哪些是违规求助? 2849863
关于积分的说明 8070201
捐赠科研通 2513660
什么是DOI,文献DOI怎么找? 1346539
科研通“疑难数据库(出版商)”最低求助积分说明 640227
邀请新用户注册赠送积分活动 610137