Visible-Infrared Person Re-Identification: A Comprehensive Survey and a New Setting

计算机科学 鉴定(生物学) 模式 人工智能 不相交集 深度学习 数据科学 机器学习 数学 社会科学 植物 生物 组合数学 社会学
作者
Huantao Zheng,Xian Zhong,Wenxin Huang,Kui Jiang,Wenxuan Liu,Zheng Wang
出处
期刊:Electronics [MDPI AG]
卷期号:11 (3): 454-454 被引量:8
标识
DOI:10.3390/electronics11030454
摘要

Person re-identification (ReID) plays a crucial role in video surveillance with the aim to search a specific person across disjoint cameras, and it has progressed notably in recent years. However, visible cameras may not be able to record enough information about the pedestrian’s appearance under the condition of low illumination. On the contrary, thermal infrared images can significantly mitigate this issue. To this end, combining visible images with infrared images is a natural trend, and are considerably heterogeneous modalities. Some attempts have recently been contributed to visible-infrared person re-identification (VI-ReID). This paper provides a complete overview of current VI-ReID approaches that employ deep learning algorithms. To align with the practical application scenarios, we first propose a new testing setting and systematically evaluate state-of-the-art methods based on our new setting. Then, we compare ReID with VI-ReID in three aspects, including data composition, challenges, and performance. According to the summary of previous work, we classify the existing methods into two categories. Additionally, we elaborate on frequently used datasets and metrics for performance evaluation. We give insights on the historical development and conclude the limitations of off-the-shelf methods. We finally discuss the future directions of VI-ReID that the community should further address.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
肘击面完成签到,获得积分10
刚刚
Kakarotto完成签到 ,获得积分10
1秒前
hhxnll完成签到 ,获得积分10
2秒前
忧郁小刺猬完成签到,获得积分10
2秒前
William完成签到,获得积分10
2秒前
李健应助Iris采纳,获得10
3秒前
共享精神应助rice0601采纳,获得10
3秒前
3秒前
心海应助一颗树采纳,获得10
3秒前
4秒前
Ray羽曦~应助小杜采纳,获得10
4秒前
5秒前
科研通AI2S应助甜甜哩采纳,获得10
5秒前
沉鱼完成签到,获得积分10
5秒前
5秒前
shi0331发布了新的文献求助10
5秒前
5秒前
大个应助禹无极采纳,获得10
6秒前
6秒前
LL完成签到 ,获得积分10
6秒前
大个应助lin采纳,获得10
7秒前
miHoYo发布了新的文献求助10
7秒前
8秒前
8秒前
最爱吃芒果完成签到,获得积分10
8秒前
8秒前
liangxiaona发布了新的文献求助10
8秒前
8秒前
jcduoduo完成签到,获得积分10
9秒前
852应助千秋入画采纳,获得10
9秒前
9秒前
cimu95发布了新的文献求助10
9秒前
李狗蛋发布了新的文献求助10
10秒前
lbma完成签到,获得积分10
10秒前
打打应助liu采纳,获得10
11秒前
外向的飞机完成签到,获得积分20
11秒前
DAJI完成签到,获得积分10
12秒前
Cu完成签到,获得积分10
12秒前
12秒前
决明完成签到,获得积分10
13秒前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
2024 Medicinal Chemistry Reviews 400
Dictionary of socialism 350
Mixed-anion Compounds 300
Geochemistry, 2nd Edition 地球化学经典教科书第二版 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3197292
求助须知:如何正确求助?哪些是违规求助? 2846054
关于积分的说明 8057722
捐赠科研通 2510925
什么是DOI,文献DOI怎么找? 1342936
科研通“疑难数据库(出版商)”最低求助积分说明 639473
邀请新用户注册赠送积分活动 608917