An improved AIC onset-time picking method based on regression convolutional neural network

阿卡克信息准则 卷积神经网络 计算机科学 理论(学习稳定性) 噪音(视频) 模式识别(心理学) 时域 人工智能 回归 人工神经网络 语音识别 算法 数学 统计 机器学习 图像(数学) 计算机视觉
作者
Haoda Li,Zhensheng Yang,Wei Yan
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:171: 108867-108867 被引量:22
标识
DOI:10.1016/j.ymssp.2022.108867
摘要

Akaike information criterion, known as AIC, has become one of the most used methods for acoustic emission (AE) signals onset-time picking since it was proposed in 1970s. However in practical applications, the automatic onset-times picking are hard to perform precisely due to the interference of the strong background noise and static noise, which affects the accuracy of AIC picking. In this work, an improved AIC onset-time picking method based on regression convolutional neural network (CNN) is proposed. First, several features of AE signals to be trained are selected manually, and arrival times of AE signals are labeled correspondingly. Then datasets with features and labels are put into the regression CNN model for training and enhancing the connection of the signals in the time domain. Finally, AIC algorithm is applied to obtain the onset times of the signals processed by the trained CNN model. Based on the Hsu-Nielsen source AE data, the stability and performance of the proposed method are tested, analyzed and compared with those of other mainstream detection methods: AIC, short/long term average combined with AIC (STA/LTA-AIC), and floating threshold (FT). The results prove that the accuracy of the proposed method significantly exceeds that of other methods. Meanwhile, especially in low signal-to-noise ratios (SNRs) scenario, the accuracy stability of the improved method has excellent accuracy and stability, which proves that the proposed method has promising onset-time picking performance for AE signals, including signals with low SNR characteristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天呼的海角完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
4秒前
jiangcai完成签到,获得积分10
5秒前
Cherry完成签到,获得积分10
7秒前
正能量的可可可完成签到,获得积分10
7秒前
tuo zhang发布了新的文献求助10
10秒前
草莓养乐多完成签到 ,获得积分10
10秒前
糊涂完成签到,获得积分10
10秒前
哦哦哦发布了新的文献求助10
10秒前
in完成签到 ,获得积分10
11秒前
pilot完成签到,获得积分10
13秒前
劣根完成签到,获得积分10
14秒前
Liang发布了新的文献求助20
14秒前
16秒前
17秒前
曾小莹完成签到,获得积分10
17秒前
苏信怜完成签到,获得积分10
18秒前
21秒前
大气灵枫发布了新的文献求助10
21秒前
nn发布了新的文献求助10
22秒前
tuo zhang完成签到,获得积分10
24秒前
务实的绝悟完成签到,获得积分10
24秒前
怡然问晴发布了新的文献求助10
26秒前
开拖拉机的医学僧完成签到 ,获得积分10
27秒前
体贴凌柏发布了新的文献求助10
28秒前
Kinn完成签到,获得积分10
29秒前
29秒前
华仔应助枕星采纳,获得10
29秒前
Perry应助科研通管家采纳,获得30
30秒前
Jasper应助科研通管家采纳,获得10
30秒前
Jasper应助科研通管家采纳,获得30
30秒前
共享精神应助科研通管家采纳,获得30
30秒前
31秒前
无花果应助科研通管家采纳,获得10
31秒前
小二郎应助科研通管家采纳,获得10
31秒前
CipherSage应助科研通管家采纳,获得10
31秒前
bkagyin应助科研通管家采纳,获得10
31秒前
31秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038303
求助须知:如何正确求助?哪些是违规求助? 3576013
关于积分的说明 11374210
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029