An improved AIC onset-time picking method based on regression convolutional neural network

阿卡克信息准则 卷积神经网络 计算机科学 理论(学习稳定性) 噪音(视频) 模式识别(心理学) 时域 人工智能 回归 人工神经网络 语音识别 算法 数学 统计 机器学习 图像(数学) 计算机视觉
作者
Haoda Li,Zhensheng Yang,Wei Yan
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:171: 108867-108867 被引量:38
标识
DOI:10.1016/j.ymssp.2022.108867
摘要

Akaike information criterion, known as AIC, has become one of the most used methods for acoustic emission (AE) signals onset-time picking since it was proposed in 1970s. However in practical applications, the automatic onset-times picking are hard to perform precisely due to the interference of the strong background noise and static noise, which affects the accuracy of AIC picking. In this work, an improved AIC onset-time picking method based on regression convolutional neural network (CNN) is proposed. First, several features of AE signals to be trained are selected manually, and arrival times of AE signals are labeled correspondingly. Then datasets with features and labels are put into the regression CNN model for training and enhancing the connection of the signals in the time domain. Finally, AIC algorithm is applied to obtain the onset times of the signals processed by the trained CNN model. Based on the Hsu-Nielsen source AE data, the stability and performance of the proposed method are tested, analyzed and compared with those of other mainstream detection methods: AIC, short/long term average combined with AIC (STA/LTA-AIC), and floating threshold (FT). The results prove that the accuracy of the proposed method significantly exceeds that of other methods. Meanwhile, especially in low signal-to-noise ratios (SNRs) scenario, the accuracy stability of the improved method has excellent accuracy and stability, which proves that the proposed method has promising onset-time picking performance for AE signals, including signals with low SNR characteristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ouyekk完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
萌羊发布了新的文献求助10
3秒前
3秒前
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
3秒前
smottom应助科研通管家采纳,获得10
3秒前
smottom应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
香菜完成签到,获得积分10
3秒前
华仔应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
4秒前
BowieHuang应助科研通管家采纳,获得10
4秒前
BowieHuang应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
smottom应助科研通管家采纳,获得10
4秒前
smottom应助科研通管家采纳,获得10
4秒前
juju1234完成签到,获得积分10
4秒前
4秒前
黑白发布了新的文献求助10
4秒前
4秒前
郭峰完成签到,获得积分20
4秒前
4秒前
4秒前
4秒前
BowieHuang应助科研通管家采纳,获得10
4秒前
ZHANG发布了新的文献求助20
5秒前
笨笨山芙应助科研通管家采纳,获得10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776553
求助须知:如何正确求助?哪些是违规求助? 5629807
关于积分的说明 15443193
捐赠科研通 4908648
什么是DOI,文献DOI怎么找? 2641367
邀请新用户注册赠送积分活动 1589320
关于科研通互助平台的介绍 1543933