An improved AIC onset-time picking method based on regression convolutional neural network

阿卡克信息准则 卷积神经网络 计算机科学 理论(学习稳定性) 噪音(视频) 模式识别(心理学) 时域 人工智能 回归 人工神经网络 语音识别 算法 数学 统计 机器学习 图像(数学) 计算机视觉
作者
Haoda Li,Zhensheng Yang,Wei Yan
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:171: 108867-108867 被引量:22
标识
DOI:10.1016/j.ymssp.2022.108867
摘要

Akaike information criterion, known as AIC, has become one of the most used methods for acoustic emission (AE) signals onset-time picking since it was proposed in 1970s. However in practical applications, the automatic onset-times picking are hard to perform precisely due to the interference of the strong background noise and static noise, which affects the accuracy of AIC picking. In this work, an improved AIC onset-time picking method based on regression convolutional neural network (CNN) is proposed. First, several features of AE signals to be trained are selected manually, and arrival times of AE signals are labeled correspondingly. Then datasets with features and labels are put into the regression CNN model for training and enhancing the connection of the signals in the time domain. Finally, AIC algorithm is applied to obtain the onset times of the signals processed by the trained CNN model. Based on the Hsu-Nielsen source AE data, the stability and performance of the proposed method are tested, analyzed and compared with those of other mainstream detection methods: AIC, short/long term average combined with AIC (STA/LTA-AIC), and floating threshold (FT). The results prove that the accuracy of the proposed method significantly exceeds that of other methods. Meanwhile, especially in low signal-to-noise ratios (SNRs) scenario, the accuracy stability of the improved method has excellent accuracy and stability, which proves that the proposed method has promising onset-time picking performance for AE signals, including signals with low SNR characteristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
文光完成签到,获得积分10
1秒前
Violet发布了新的文献求助10
1秒前
1秒前
2秒前
迷路的虔发布了新的文献求助10
2秒前
Wwt发布了新的文献求助10
2秒前
3秒前
3秒前
vera完成签到,获得积分10
3秒前
归尘发布了新的文献求助10
3秒前
Fay完成签到,获得积分20
3秒前
tramp应助稳重向南采纳,获得20
3秒前
鄢懋卿应助稳重向南采纳,获得20
4秒前
hi应助稳重向南采纳,获得20
4秒前
FashionBoy应助2425采纳,获得10
4秒前
Tina发布了新的文献求助10
5秒前
深情安青应助TOBET采纳,获得10
5秒前
英俊的铭应助飘零枫叶采纳,获得10
6秒前
迷路向松发布了新的文献求助10
6秒前
6秒前
领导范儿应助北栀采纳,获得10
6秒前
6秒前
小蘑菇应助激昂的南烟采纳,获得10
6秒前
DiJia完成签到 ,获得积分10
6秒前
xzleee完成签到 ,获得积分10
6秒前
ATM完成签到,获得积分20
7秒前
求助123完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
7秒前
CodeCraft应助tdtk采纳,获得10
7秒前
风中的电脑完成签到,获得积分10
8秒前
王丽芳发布了新的文献求助10
8秒前
你66发布了新的文献求助10
8秒前
ATM发布了新的文献求助10
9秒前
小小怪完成签到,获得积分20
9秒前
科目三应助小汤采纳,获得10
9秒前
德爱完成签到,获得积分10
9秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970632
求助须知:如何正确求助?哪些是违规求助? 3515261
关于积分的说明 11177794
捐赠科研通 3250448
什么是DOI,文献DOI怎么找? 1795314
邀请新用户注册赠送积分活动 875781
科研通“疑难数据库(出版商)”最低求助积分说明 805073