An improved AIC onset-time picking method based on regression convolutional neural network

阿卡克信息准则 卷积神经网络 计算机科学 理论(学习稳定性) 噪音(视频) 模式识别(心理学) 时域 人工智能 回归 人工神经网络 语音识别 算法 数学 统计 机器学习 图像(数学) 计算机视觉
作者
Haoda Li,Zhensheng Yang,Wei Yan
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:171: 108867-108867 被引量:22
标识
DOI:10.1016/j.ymssp.2022.108867
摘要

Akaike information criterion, known as AIC, has become one of the most used methods for acoustic emission (AE) signals onset-time picking since it was proposed in 1970s. However in practical applications, the automatic onset-times picking are hard to perform precisely due to the interference of the strong background noise and static noise, which affects the accuracy of AIC picking. In this work, an improved AIC onset-time picking method based on regression convolutional neural network (CNN) is proposed. First, several features of AE signals to be trained are selected manually, and arrival times of AE signals are labeled correspondingly. Then datasets with features and labels are put into the regression CNN model for training and enhancing the connection of the signals in the time domain. Finally, AIC algorithm is applied to obtain the onset times of the signals processed by the trained CNN model. Based on the Hsu-Nielsen source AE data, the stability and performance of the proposed method are tested, analyzed and compared with those of other mainstream detection methods: AIC, short/long term average combined with AIC (STA/LTA-AIC), and floating threshold (FT). The results prove that the accuracy of the proposed method significantly exceeds that of other methods. Meanwhile, especially in low signal-to-noise ratios (SNRs) scenario, the accuracy stability of the improved method has excellent accuracy and stability, which proves that the proposed method has promising onset-time picking performance for AE signals, including signals with low SNR characteristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欣欣发布了新的文献求助10
1秒前
SciGPT应助时遇采纳,获得10
1秒前
555557应助小李采纳,获得10
1秒前
小清新完成签到,获得积分10
2秒前
搜集达人应助樱悼柳雪采纳,获得10
2秒前
周周发布了新的文献求助10
2秒前
QQ完成签到,获得积分10
2秒前
碧蓝皮卡丘完成签到,获得积分10
3秒前
ylq发布了新的文献求助10
4秒前
人福药业完成签到,获得积分10
4秒前
dora完成签到,获得积分10
4秒前
Owen应助mia采纳,获得10
4秒前
天天快乐应助nkmenghan采纳,获得10
6秒前
乐乐应助CCCr采纳,获得10
6秒前
希望天下0贩的0应助wjx采纳,获得30
6秒前
上官若男应助周周采纳,获得10
7秒前
7秒前
7秒前
柔弱的马里奥完成签到,获得积分10
7秒前
爱听歌蘑菇完成签到,获得积分10
8秒前
8秒前
BL发布了新的文献求助10
10秒前
田様应助慕容松采纳,获得10
11秒前
李红玉发布了新的文献求助10
11秒前
panda发布了新的文献求助10
11秒前
金雪完成签到,获得积分10
11秒前
12秒前
CipherSage应助butter采纳,获得10
12秒前
13秒前
田様应助伶俐一曲采纳,获得10
13秒前
FashionBoy应助Monika采纳,获得10
13秒前
Zww发布了新的文献求助10
13秒前
lll完成签到,获得积分10
14秒前
王者归来发布了新的文献求助200
14秒前
nkmenghan完成签到,获得积分10
14秒前
14秒前
14秒前
哈桑士完成签到,获得积分10
15秒前
15秒前
16秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974856
求助须知:如何正确求助?哪些是违规求助? 3519400
关于积分的说明 11198085
捐赠科研通 3255563
什么是DOI,文献DOI怎么找? 1797860
邀请新用户注册赠送积分活动 877208
科研通“疑难数据库(出版商)”最低求助积分说明 806219