An improved AIC onset-time picking method based on regression convolutional neural network

阿卡克信息准则 卷积神经网络 计算机科学 理论(学习稳定性) 噪音(视频) 模式识别(心理学) 时域 人工智能 回归 人工神经网络 语音识别 算法 数学 统计 机器学习 图像(数学) 计算机视觉
作者
Haoda Li,Zhensheng Yang,Wei Yan
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:171: 108867-108867 被引量:22
标识
DOI:10.1016/j.ymssp.2022.108867
摘要

Akaike information criterion, known as AIC, has become one of the most used methods for acoustic emission (AE) signals onset-time picking since it was proposed in 1970s. However in practical applications, the automatic onset-times picking are hard to perform precisely due to the interference of the strong background noise and static noise, which affects the accuracy of AIC picking. In this work, an improved AIC onset-time picking method based on regression convolutional neural network (CNN) is proposed. First, several features of AE signals to be trained are selected manually, and arrival times of AE signals are labeled correspondingly. Then datasets with features and labels are put into the regression CNN model for training and enhancing the connection of the signals in the time domain. Finally, AIC algorithm is applied to obtain the onset times of the signals processed by the trained CNN model. Based on the Hsu-Nielsen source AE data, the stability and performance of the proposed method are tested, analyzed and compared with those of other mainstream detection methods: AIC, short/long term average combined with AIC (STA/LTA-AIC), and floating threshold (FT). The results prove that the accuracy of the proposed method significantly exceeds that of other methods. Meanwhile, especially in low signal-to-noise ratios (SNRs) scenario, the accuracy stability of the improved method has excellent accuracy and stability, which proves that the proposed method has promising onset-time picking performance for AE signals, including signals with low SNR characteristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
cly完成签到,获得积分10
刚刚
Ava应助YUAN采纳,获得10
刚刚
刚刚
ich完成签到,获得积分10
刚刚
1秒前
明亮无颜完成签到,获得积分10
1秒前
Alily发布了新的文献求助10
1秒前
次我完成签到,获得积分10
1秒前
鞠硕完成签到,获得积分20
2秒前
summer发布了新的文献求助10
2秒前
淡定完成签到,获得积分10
2秒前
Syuu发布了新的文献求助10
2秒前
M张完成签到,获得积分10
2秒前
way完成签到,获得积分10
3秒前
伤心猪大肠完成签到,获得积分10
3秒前
花开hhhhhhh发布了新的文献求助10
3秒前
3秒前
无奈冥发布了新的文献求助10
4秒前
老迟到的碧萱完成签到,获得积分20
4秒前
4秒前
淡定发布了新的文献求助10
5秒前
思芋奶糕发布了新的文献求助10
5秒前
月yue发布了新的文献求助10
5秒前
科研通AI5应助鱼鱼鱼采纳,获得10
5秒前
Wang完成签到,获得积分10
5秒前
5秒前
英姑应助食分子采纳,获得10
5秒前
苟子发布了新的文献求助10
6秒前
6秒前
112233完成签到,获得积分10
7秒前
哈哈镜发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
wanci应助江湖夜雨十年灯采纳,获得10
8秒前
8秒前
浮游应助TaiLongYang采纳,获得10
8秒前
栗栗完成签到 ,获得积分10
9秒前
9秒前
gx完成签到 ,获得积分10
9秒前
zuo发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4577004
求助须知:如何正确求助?哪些是违规求助? 3996170
关于积分的说明 12371644
捐赠科研通 3670203
什么是DOI,文献DOI怎么找? 2022678
邀请新用户注册赠送积分活动 1056753
科研通“疑难数据库(出版商)”最低求助积分说明 943949