亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An improved AIC onset-time picking method based on regression convolutional neural network

阿卡克信息准则 卷积神经网络 计算机科学 理论(学习稳定性) 噪音(视频) 模式识别(心理学) 时域 人工智能 回归 人工神经网络 语音识别 算法 数学 统计 机器学习 图像(数学) 计算机视觉
作者
Haoda Li,Zhensheng Yang,Wei Yan
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:171: 108867-108867 被引量:38
标识
DOI:10.1016/j.ymssp.2022.108867
摘要

Akaike information criterion, known as AIC, has become one of the most used methods for acoustic emission (AE) signals onset-time picking since it was proposed in 1970s. However in practical applications, the automatic onset-times picking are hard to perform precisely due to the interference of the strong background noise and static noise, which affects the accuracy of AIC picking. In this work, an improved AIC onset-time picking method based on regression convolutional neural network (CNN) is proposed. First, several features of AE signals to be trained are selected manually, and arrival times of AE signals are labeled correspondingly. Then datasets with features and labels are put into the regression CNN model for training and enhancing the connection of the signals in the time domain. Finally, AIC algorithm is applied to obtain the onset times of the signals processed by the trained CNN model. Based on the Hsu-Nielsen source AE data, the stability and performance of the proposed method are tested, analyzed and compared with those of other mainstream detection methods: AIC, short/long term average combined with AIC (STA/LTA-AIC), and floating threshold (FT). The results prove that the accuracy of the proposed method significantly exceeds that of other methods. Meanwhile, especially in low signal-to-noise ratios (SNRs) scenario, the accuracy stability of the improved method has excellent accuracy and stability, which proves that the proposed method has promising onset-time picking performance for AE signals, including signals with low SNR characteristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
碎碎发布了新的文献求助10
1秒前
领导范儿应助yilin采纳,获得10
4秒前
4秒前
DYL完成签到,获得积分10
7秒前
洞两发布了新的文献求助10
9秒前
12秒前
14秒前
疯狂老登发布了新的文献求助10
18秒前
yilin发布了新的文献求助10
19秒前
LH完成签到 ,获得积分10
20秒前
20秒前
坚定蘑菇完成签到 ,获得积分10
21秒前
汪哈七完成签到,获得积分10
22秒前
疯狂老登完成签到,获得积分10
24秒前
dvd完成签到 ,获得积分10
26秒前
英俊的铭应助洞两采纳,获得10
30秒前
爱航哥多久了完成签到 ,获得积分10
34秒前
42秒前
归尘发布了新的文献求助10
46秒前
1分钟前
酒渡完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
情怀应助科研通管家采纳,获得10
1分钟前
小马甲应助科研通管家采纳,获得10
1分钟前
李健应助Rui采纳,获得10
1分钟前
1分钟前
kukudou2发布了新的文献求助10
1分钟前
善良的花菜完成签到,获得积分10
1分钟前
1分钟前
1分钟前
pryturk发布了新的文献求助10
1分钟前
1分钟前
传奇3应助善良的花菜采纳,获得10
1分钟前
1分钟前
洞两发布了新的文献求助10
1分钟前
侯_完成签到 ,获得积分10
1分钟前
junjun2011完成签到,获得积分10
1分钟前
Lucas应助kukudou2采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788218
求助须知:如何正确求助?哪些是违规求助? 5705246
关于积分的说明 15473310
捐赠科研通 4916338
什么是DOI,文献DOI怎么找? 2646295
邀请新用户注册赠送积分活动 1593951
关于科研通互助平台的介绍 1548328