计算机科学
聚类分析
爬山
核密度估计
算法
核(代数)
高斯分布
变核密度估计
数学优化
高斯函数
期望最大化算法
密度估算
星团(航天器)
攀登
核方法
数学
最大似然
人工智能
统计
组合数学
物理
量子力学
历史
考古
估计员
支持向量机
程序设计语言
作者
Alexander Hinneburg,Hans-Henning Gabriel
标识
DOI:10.1007/978-3-540-74825-0_7
摘要
The Denclue algorithm employs a cluster model based on kernel density estimation. A cluster is defined by a local maximum of the estimated density function. Data points are assigned to clusters by hill climbing, i.e. points going to the same local maximum are put into the same cluster. A disadvantage of Denclue 1.0 is, that the used hill climbing may make unnecessary small steps in the beginning and never converges exactly to the maximum, it just comes close.We introduce a new hill climbing procedure for Gaussian kernels, which adjusts the step size automatically at no extra costs. We prove that the procedure converges exactly towards a local maximum by reducing it to a special case of the expectation maximization algorithm. We show experimentally that the new procedure needs much less iterations and can be accelerated by sampling based methods with sacrificing only a small amount of accuracy.
科研通智能强力驱动
Strongly Powered by AbleSci AI