An Indoor Mobile Location Estimator in Mixed Line of Sight/Non-Line of Sight Environments Using Replacement Modified Hidden Markov Models and an Interacting Multiple Model

非视线传播 隐马尔可夫模型 计算机科学 算法 直线(几何图形) 马尔可夫模型 估计员 节点(物理) 马尔可夫链 无线 人工智能 机器学习 工程类 数学 电信 统计 结构工程 几何学
作者
Jingyu Ru,Chengdong Wu,Zixi Jia,Yufang Yang,Yunzhou Zhang,Nan Hu
出处
期刊:Sensors [MDPI AG]
卷期号:15 (6): 14298-14327 被引量:4
标识
DOI:10.3390/s150614298
摘要

Localization as a technique to solve the complex and challenging problems besetting line-of-sight (LOS) and non-line-of-sight (NLOS) transmissions has recently attracted considerable attention in the wireless sensor network field. This paper proposes a strategy for eliminating NLOS localization errors during calculation of the location of mobile terminals (MTs) in unfamiliar indoor environments. In order to improve the hidden Markov model (HMM), we propose two modified algorithms, namely, modified HMM (M-HMM) and replacement modified HMM (RM-HMM). Further, a hybrid localization algorithm that combines HMM with an interacting multiple model (IMM) is proposed to represent the velocity of mobile nodes. This velocity model is divided into a high-speed and a low-speed model, which means the nodes move at different speeds following the same mobility pattern. Each moving node continually switches its state based on its probability. Consequently, to improve precision, each moving node uses the IMM model to integrate the results from the HMM and its modified forms. Simulation experiments conducted show that our proposed algorithms perform well in both distance estimation and coordinate calculation, with increasing accuracy of localization of the proposed algorithms in the order M-HMM, RM-HMM, and HMM + IMM. The simulations also show that the three algorithms are accurate, stable, and robust.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
烊烊坨发布了新的文献求助10
刚刚
yuuu发布了新的文献求助30
1秒前
2秒前
2秒前
2秒前
所所应助阿白采纳,获得10
3秒前
totoro发布了新的文献求助30
3秒前
CipherSage应助李亚宁采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
张先生发布了新的文献求助10
4秒前
清风锦鲤珮完成签到,获得积分10
4秒前
jing完成签到,获得积分10
5秒前
彼翎完成签到,获得积分10
5秒前
shhoing应助weidingge2011采纳,获得10
5秒前
Young4399发布了新的文献求助10
5秒前
乌衣白马发布了新的文献求助10
5秒前
6秒前
烊烊坨完成签到,获得积分10
6秒前
mumu发布了新的文献求助10
6秒前
义气小笼包完成签到,获得积分10
7秒前
星辰大海应助棕色垂耳兔采纳,获得10
8秒前
8秒前
丘比特应助yangts2021采纳,获得10
8秒前
kingwill举报CHL5722求助涉嫌违规
9秒前
9秒前
9秒前
小羊完成签到 ,获得积分10
9秒前
9秒前
浮浮世世应助zzzzzzz采纳,获得100
10秒前
虎子发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
13秒前
13秒前
13秒前
科研通AI6应助jungle采纳,获得10
13秒前
莉123完成签到,获得积分20
14秒前
Akim应助chenxi3099采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531309
求助须知:如何正确求助?哪些是违规求助? 4620136
关于积分的说明 14571914
捐赠科研通 4559695
什么是DOI,文献DOI怎么找? 2498561
邀请新用户注册赠送积分活动 1478526
关于科研通互助平台的介绍 1449957