The Usefulness of Mean and Median Frequencies in Electromyography Analysis

肌电图 物理医学与康复 统计 医学 数学
作者
Angkoon Phinyomark,Sirinee Thongpanja,Huosheng Hu,Pornchai Phukpattaranont,Chusak Limsakul
出处
期刊:InTech eBooks [InTech]
被引量:254
标识
DOI:10.5772/50639
摘要

Rich useful information can be obtained from the muscles and researchers can use such information in a wide class of clinical and engineering applications by measuring surface electromyography (EMG) signals (Merletti & Parker, 2004). Normally, EMG signals are acquired by surface electrodes that are placed on the skin superimposed on the targeted muscle. In order to use the EMG signal as a diagnosis signal or a control signal, a feature is often extracted before performing analysis or classification stage (Phinyomark et al., 2012a) because a lot of information, both useful information and noise (Phinyomark et al., 2012b), is contained in the raw EMG data. An EMG feature is a distinct characteristic of the signal that can be described or observed quantitatively, such as being large or small, spiky or smooth, and fast or slow. Generally, EMG features can be computed in numerical form from a finite length time interval and can change as a function of time, i.e. a voltage or a frequency. They can be computed in several domains, such as time domain, frequency domain, timefrequency and time-scale representations (Boostani & Moradi, 2003). However, frequencydomain features show the better performance than other-domain features in case of the assessing muscle fatigue (Al-Mulla et al., 2012). Mean frequency (MNF) and median frequency (MDF) are the most useful and popular frequency-domain features (Phinyomark et al., 2009) and frequently used for the assessment of muscle fatigue in surface EMG signals (Cifrek et al., 2009).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
思源应助fancyjun采纳,获得10
2秒前
3秒前
傻瓜子发布了新的文献求助10
3秒前
yeyuchenfeng发布了新的文献求助10
3秒前
4秒前
4秒前
5秒前
王玄琳发布了新的文献求助10
5秒前
Ava应助停停走走采纳,获得10
6秒前
6秒前
textileting关注了科研通微信公众号
6秒前
热心灯泡完成签到,获得积分10
7秒前
7秒前
风中黎昕完成签到,获得积分10
8秒前
9秒前
直率心锁发布了新的文献求助10
9秒前
10秒前
晚意发布了新的文献求助10
11秒前
bkagyin应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
12秒前
今后应助科研通管家采纳,获得10
12秒前
Akim应助科研通管家采纳,获得10
12秒前
12秒前
煜琪发布了新的文献求助10
12秒前
1+1应助科研通管家采纳,获得10
12秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
脑洞疼应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
上官若男应助科研通管家采纳,获得10
12秒前
12秒前
情怀应助科研通管家采纳,获得10
12秒前
13秒前
V_v_V完成签到,获得积分10
14秒前
瑾玉发布了新的文献求助10
15秒前
黄小佳完成签到,获得积分10
15秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3329002
求助须知:如何正确求助?哪些是违规求助? 2958957
关于积分的说明 8593048
捐赠科研通 2637345
什么是DOI,文献DOI怎么找? 1443453
科研通“疑难数据库(出版商)”最低求助积分说明 668699
邀请新用户注册赠送积分活动 656046