The Usefulness of Mean and Median Frequencies in Electromyography Analysis

肌电图 物理医学与康复 统计 医学 数学
作者
Angkoon Phinyomark,Sirinee Thongpanja,Huosheng Hu,Pornchai Phukpattaranont,Chusak Limsakul
出处
期刊:InTech eBooks [InTech]
被引量:254
标识
DOI:10.5772/50639
摘要

Rich useful information can be obtained from the muscles and researchers can use such information in a wide class of clinical and engineering applications by measuring surface electromyography (EMG) signals (Merletti & Parker, 2004). Normally, EMG signals are acquired by surface electrodes that are placed on the skin superimposed on the targeted muscle. In order to use the EMG signal as a diagnosis signal or a control signal, a feature is often extracted before performing analysis or classification stage (Phinyomark et al., 2012a) because a lot of information, both useful information and noise (Phinyomark et al., 2012b), is contained in the raw EMG data. An EMG feature is a distinct characteristic of the signal that can be described or observed quantitatively, such as being large or small, spiky or smooth, and fast or slow. Generally, EMG features can be computed in numerical form from a finite length time interval and can change as a function of time, i.e. a voltage or a frequency. They can be computed in several domains, such as time domain, frequency domain, timefrequency and time-scale representations (Boostani & Moradi, 2003). However, frequencydomain features show the better performance than other-domain features in case of the assessing muscle fatigue (Al-Mulla et al., 2012). Mean frequency (MNF) and median frequency (MDF) are the most useful and popular frequency-domain features (Phinyomark et al., 2009) and frequently used for the assessment of muscle fatigue in surface EMG signals (Cifrek et al., 2009).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
多泽应助JJQ采纳,获得10
1秒前
1秒前
科目三应助嗯很好采纳,获得10
2秒前
CC发布了新的文献求助10
2秒前
3秒前
归零儿完成签到,获得积分10
3秒前
4秒前
可爱的函函应助重要墨镜采纳,获得10
4秒前
高高访文完成签到,获得积分10
4秒前
4秒前
祺屿梦完成签到,获得积分10
5秒前
5秒前
毕业顺利发布了新的文献求助10
6秒前
cs完成签到 ,获得积分10
6秒前
桐桐应助小郭采纳,获得10
6秒前
6秒前
7秒前
8秒前
小兔子乖乖完成签到 ,获得积分10
8秒前
8秒前
哈哈哈发布了新的文献求助10
8秒前
9秒前
10秒前
Elaine发布了新的文献求助10
10秒前
10秒前
自信搬砖发布了新的文献求助10
11秒前
冷静水池发布了新的文献求助10
11秒前
慕青应助忧郁芒果采纳,获得10
11秒前
12秒前
ccalvintan发布了新的文献求助10
12秒前
12秒前
坨坨西州发布了新的文献求助10
12秒前
溜溜球发布了新的文献求助10
13秒前
可爱的石头完成签到,获得积分10
13秒前
虚幻元风发布了新的文献求助10
14秒前
kikiii发布了新的文献求助10
14秒前
秋雁风发布了新的文献求助30
14秒前
勤恳的流沙完成签到,获得积分10
15秒前
领导范儿应助Abdurrahman采纳,获得30
17秒前
18秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842096
求助须知:如何正确求助?哪些是违规求助? 3384295
关于积分的说明 10533721
捐赠科研通 3104627
什么是DOI,文献DOI怎么找? 1709760
邀请新用户注册赠送积分活动 823319
科研通“疑难数据库(出版商)”最低求助积分说明 773993