Enhanced Light Trapping and Power Conversion Efficiency in Ultrathin Plasmonic Organic Solar Cells: A Coupled Optical-Electrical Multiphysics Study on the Effect of Nanoparticle Geometry

纳米颗粒 等离子纳米粒子 能量转换效率 光伏系统 表面等离子共振 电场 光学 光学镊子 表面等离子体子
作者
Sungjun In,Daniel R. Mason,Hyunho Lee,Mi Jung,Changhee Lee,Namkyoo Park
出处
期刊:ACS Photonics [American Chemical Society]
卷期号:2 (1): 78-85 被引量:50
标识
DOI:10.1021/ph500268y
摘要

Plasmonic effects associated with localized surface plasmon (LSP) resonances such as strong light trapping, large scattering cross-section, and giant electric field enhancement have received much attention for the more efficient harvesting of solar energy. Notably, even as the thickness of the active layer is significantly reduced, the optical absorption capability of a solar cell could be maintained with the incorporation of plasmonic effects. This is especially important for the development of bulk heterojunction (BHJ) organic solar cells (OSCs), where the short exciton diffusion length, low carrier mobility, and strong charge recombination in organic materials strongly favors the use of optically thin active layers (<100 nm). However, the disappointing performance improvements obtained with plasmonic effects in the majority of BHJ OSCs realized to date suggests that plasmonic effects are yet to be fully taken advantage of; for example, in thick active layer OSCs (>100 nm), the optical absorption is already high, even in the absence of plasmonic effects, while in thin active layer OSCs (<100 nm), insufficient attention has been given to the analysis of plasmonic effects, such as the impact of plasmonic nanoparticle (NP) geometrical factors on the directional scattering efficiency. In this paper, we propose and demonstrate that the geometrical tuning of spheroidal plasmonic nanoparticles (NPs) could enable the full exploitation of plasmonic effects, providing dramatic improvements to the light absorption and energy harvesting capability of ultrathin film BHJ OSCs. Our theoretical analysis demonstrates a dramatic enhancement in optical absorption of ∼60% with spheroidal NPs embedded in a BHJ OSC device with ultrathin, <100 nm active layer, as compared to an NP absent reference device. These improvements are explained according to enhanced scattering of light into the active layer plane, spectral broadening of absorption resonances, in addition to an increased plasmonic modal volume, exhibited near LSP resonances of spheroidal NPs with optimal eccentricity. The result of our coupled optical-electrical device simulations also proves that the outstanding optical absorption enhancement obtained from the proposed device indeed translates into significant electrical performance gains; such as a ∼30% increase in the short-circuit current and ∼20% improvement in the power conversion efficiency (PCE).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小土豆完成签到,获得积分10
2秒前
aaa发布了新的文献求助20
2秒前
二巨头发布了新的文献求助10
2秒前
lsm完成签到,获得积分10
2秒前
mos2003完成签到,获得积分10
3秒前
3秒前
3秒前
子清发布了新的文献求助10
5秒前
美满的冬卉完成签到,获得积分10
5秒前
5秒前
万能图书馆应助酷奔采纳,获得10
7秒前
Owen应助开心的西瓜采纳,获得10
7秒前
不看了发布了新的文献求助10
8秒前
8秒前
8秒前
zz发布了新的文献求助30
8秒前
8秒前
cpy1004完成签到,获得积分10
9秒前
9秒前
学分完成签到 ,获得积分10
9秒前
xiaozeng完成签到,获得积分10
10秒前
yummy弯发布了新的文献求助20
10秒前
11秒前
11秒前
11秒前
11秒前
Sigma发布了新的文献求助10
12秒前
bkagyin应助科研通管家采纳,获得10
12秒前
天天快乐应助科研通管家采纳,获得10
12秒前
共享精神应助科研通管家采纳,获得10
12秒前
欣喜的初柔完成签到 ,获得积分10
12秒前
Lucas应助科研通管家采纳,获得10
12秒前
传奇3应助科研通管家采纳,获得10
12秒前
在水一方应助科研通管家采纳,获得10
12秒前
烟花应助科研通管家采纳,获得10
12秒前
研友_VZG7GZ应助科研通管家采纳,获得10
13秒前
情怀应助科研通管家采纳,获得10
13秒前
烟花应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
SciGPT应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419212
求助须知:如何正确求助?哪些是违规求助? 4534628
关于积分的说明 14145820
捐赠科研通 4451115
什么是DOI,文献DOI怎么找? 2441629
邀请新用户注册赠送积分活动 1433211
关于科研通互助平台的介绍 1410533