环境科学
气象学
植被(病理学)
可燃性
气候学
大气(单位)
降水
比例(比率)
气候模式
大气科学
气候变化
地理
地质学
地图学
化学
病理
海洋学
有机化学
医学
作者
Stéphane Mangeon,Apostolos Voulgarakis,Richard J. J. Gilham,Anna Harper,Stephen Sitch,Gerd Folberth
标识
DOI:10.5194/gmd-9-2685-2016
摘要
Abstract. Warm and dry climatological conditions favour the occurrence of forest fires. These fires then become a significant emission source to the atmosphere. Despite this global importance, fires are a local phenomenon and are difficult to represent in large-scale Earth system models (ESMs). To address this, the INteractive Fire and Emission algoRithm for Natural envirOnments (INFERNO) was developed. INFERNO follows a reduced complexity approach and is intended for decadal- to centennial-scale climate simulations and assessment models for policy making. Fuel flammability is simulated using temperature, relative humidity (RH) and fuel load as well as precipitation and soil moisture. Combining flammability with ignitions and vegetation, the burnt area is diagnosed. Emissions of carbon and key species are estimated using the carbon scheme in the Joint UK Land Environment Simulator (JULES) land surface model. JULES also possesses fire index diagnostics, which we document and compare with our fire scheme. We found INFERNO captured global burnt area variability better than individual indices, and these performed best for their native regions. Two meteorology data sets and three ignition modes are used to validate the model. INFERNO is shown to effectively diagnose global fire occurrence (R = 0.66) and emissions (R = 0.59) through an approach appropriate to the complexity of an ESM, although regional biases remain.
科研通智能强力驱动
Strongly Powered by AbleSci AI