生发泡
生物
DNA损伤
中期
卵母细胞
细胞生物学
减数分裂
促成熟因子
染色体早凝
多极纺锤
G2-M DNA损伤检查点
分子生物学
DNA
细胞周期检查点
遗传学
细胞周期
染色体
染色质
细胞凋亡
细胞周期蛋白依赖激酶1
胚胎
中心体
基因
作者
Hai Yang Wang,Yi‐Bo Luo,Minghui Zhao,Zili Lin,Jeongwoo Kwon,Xiang‐Shun Cui,Nam‐Hyung Kim
摘要
We used etoposide (25-100 µg/mL) to induce DNA double-strand breaks (DSBs) in porcine oocytes at the germinal vesicle (GV) stage to determine how such damage affects oocyte maturation. We observed that DNA damage did not delay the rate of germinal vesicle breakdown (GVBD), but did inhibit the final stages of maturation, as indicated by the failure to extrude the first polar body. Oocytes with low levels of DSBs failed to effectively activate ataxia telangiectasia-mutated (ATM) kinase, while those with severe DNA DSBs failed to activate checkpoint kinase 1 (CHK1)--the two regulators of the DNA damage response pathway--indicating that porcine oocytes lack an efficient G2/M phase checkpoint. DSBs induced spindle defects and chromosomal misalignments, leading to the arrest of these oocytes at meiotic metaphase I. The activity of maturation-promoting factor also did not increase appropriately in oocytes with DNA DSBs, although its abundance was sufficient to promote GVBD and chromosomal condensation. Following parthenogenetic activation, embryos from etoposide-treated oocytes formed numerous micronuclei. Thus, our results indicate that DNA DSBs do not efficiently activate the ATM/CHK1-dependent DNA-damage checkpoint in porcine oocytes, allowing these DNA-impaired oocytes to enter M phase. Oocytes with DNA damage did, however, arrest at metaphase I in response to spindle defects and chromosomal misalignments, which limited the ability of these oocytes to reach meiotic metaphase II.
科研通智能强力驱动
Strongly Powered by AbleSci AI