鞘氨醇激酶1
下调和上调
内分泌学
鞘氨醇激酶
内科学
鞘氨醇
1-磷酸鞘氨醇
化学
信号转导
糖尿病肾病
肾
生物
细胞生物学
受体
医学
生物化学
基因
作者
Cheng Chen,Kaipeng Huang,Jie Hao,Junying Huang,Zhiying Yang,Fengxiao Xiong,Peiqing Liu,Heqing Huang
标识
DOI:10.1016/j.mce.2016.03.003
摘要
We previously demonstrated that activation of sphingosine kinase 1 (SphK1)- sphingosine 1- phosphate (S1P) signaling pathway by high glucose (HG) plays a pivotal role in increasing the expression of fibronectin (FN), an important fibrotic component, by promoting the DNA-binding activity of transcription factor activator protein 1 (AP-1) in glomerular mesangial cells (GMCs) under diabetic conditions. As a multi-target anti-oxidative drug, polydatin (PD) has been shown to have renoprotective effects on experimental diabetes. However, whether PD could resist diabetic nephropathy (DN) by regulating SphK1-S1P signaling pathway needs further investigation. Here, we found that PD significantly reversed the upregulated FN and ICAM-1 expression in GMCs exposed to AGEs. Simultaneously, PD dose-dependently inhibited SphK1 levels at the protein expression and kinase activity and attenuated S1P production under AGEs treatment conditions. In addition, PD reduced SphK activity in GMCs transfected with wild-type SphKWT plasmid and significantly suppressed SphK1-mediated increase of FN and ICAM-1 levels under normal conditions. Furthermore, we found that the AGEs-induced upregulation of phosphorylation of c-Jun at Ser63 and Ser73 and c-Fos at Ser32, DNA-binding activity and transcriptional activity of AP-1 were blocked by PD. In comparison with db/db model group, PD treatment suppressed SphK1 levels (mRNA, protein expression, and activity) and S1P production, reversed the upregulation of FN, ICAM-1, c-Jun, and c-Fos in the kidney tissues of diabetic mice, and finally ameliorated renal injury in db/db mice. These findings suggested that the downregulation of SphK1-S1P signaling pathway is probably a novel mechanism by which PD suppressed AGEs-induced FN and ICAM-1 expression and improved renal dysfunction of diabetic models.
科研通智能强力驱动
Strongly Powered by AbleSci AI