已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Hyperspectral Endmember Detection and Band Selection Using Bayesian Methods

端元 高光谱成像 数学 模式识别(心理学) 先验概率 像素 人工智能 贝叶斯概率 计算机科学
作者
Alina Zare
链接
摘要

Four methods for endmember detection and spectral unmixing which estimate endmember spectra and proportion values for each pixel are described. The first method simultaneously determines the number of endmembers in addition to estimating endmember spectra and proportion values. The second method treats endmembers as distributions and estimates each endmember distribution while simultaneously learning proportion values. The third endmember detection method autonomously partitions the input data set into convex regions for which endmember distributions and proportion values are simultaneously estimated. The fourth method which performs hyperspectral band selection in addition to endmember detection, spectral unmixing, and determinating of the number of endmembers is also described. Few endmember detection algorithms estimate the number of endmembers in addition to determining their spectral shape. Also, methods which treat endmembers as distributions or treat hyperspectral images as piece-wise convex data sets have not been previously developed. A hyperspectral image is a three-dimensional data cube containing radiance values collected over an area (or scene) in a range of wavelengths. Endmember detection and spectral unmixing attempt to decompose a hyperspectral image into the pure - separate and individual - spectral signatures of the materials in a scene, and the proportions of each material at every pixel location. Each spectral pixel in the image can then be approximated by a convex combination of proportions and endmember spectra. The first method described is the Sparsity Promoting Iterated Constrained Endmembers (SPICE) algorithm, which incorporates sparsity-promoting priors to estimate the number of endmembers. The algorithm is initialized with a large number of endmembers. The sparsity promotion process drives all proportions of some endmembers to zero. These endmembers can be removed by SPICE with no effect on the error incurred by representing the image with endmembers. The second method, the Endmember Distributions detection (ED) algorithm, models each endmember as a distribution rather than a single spectrum. This view can incorporate an endmember's spectral variation which may occur due to varying environmental conditions as well as inherent variability in a material. The third method is the Piece-wise Convex Endmember (PCE) detection algorithm which partitions the input hyperspectral data set into convex regions and determines endmembers for each of these regions. The number of convex regions are determined autonomously using the Dirichlet process while simultaneously estimating endmember distributions and proportion values for each pixel in the input data set. The SPICE, ED and PCE algorithms are effective at handling highly-mixed hyperspectral images where all of the pixels in the scene contain mixtures of multiple endmembers. These methods are capable of extracting endmember spectra from a scene that does not contain pure pixels composed of only a single endmember's material. Furthermore, the methods…

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
万能图书馆应助tdtk采纳,获得10
1秒前
帅气冥王星完成签到 ,获得积分10
2秒前
wackykao完成签到 ,获得积分10
5秒前
我的文献呢发布了新的文献求助200
5秒前
苏绿秋完成签到,获得积分10
5秒前
XMUZH完成签到 ,获得积分10
7秒前
orixero应助猫i采纳,获得10
9秒前
YEM完成签到,获得积分10
11秒前
fsznc完成签到 ,获得积分0
17秒前
活泼的绿蝶完成签到 ,获得积分20
19秒前
情怀应助tdtk采纳,获得10
21秒前
JOSIELO完成签到 ,获得积分10
22秒前
tinis关注了科研通微信公众号
22秒前
RHR完成签到,获得积分10
22秒前
疯大仙外向太清完成签到,获得积分10
23秒前
xue关闭了xue文献求助
24秒前
星辰大海应助1762120采纳,获得10
27秒前
大个应助nini采纳,获得10
29秒前
TiAmo发布了新的文献求助10
30秒前
于呵呵呵呵完成签到 ,获得积分10
32秒前
紫色翡翠发布了新的文献求助10
36秒前
36秒前
38秒前
爆米花应助tdtk采纳,获得10
39秒前
个木完成签到 ,获得积分10
41秒前
123发布了新的文献求助10
41秒前
独角Jing发布了新的文献求助10
41秒前
深情安青应助七七七采纳,获得10
42秒前
搞怪冬天发布了新的文献求助10
43秒前
46秒前
47秒前
量子星尘发布了新的文献求助10
47秒前
48秒前
赘婿应助二仙桥成华大道采纳,获得10
51秒前
zmmm发布了新的文献求助10
52秒前
52秒前
Gao发布了新的文献求助10
54秒前
NexusExplorer应助tdtk采纳,获得10
54秒前
善学以致用应助Gao采纳,获得10
58秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953303
求助须知:如何正确求助?哪些是违规求助? 3498726
关于积分的说明 11092951
捐赠科研通 3229257
什么是DOI,文献DOI怎么找? 1785272
邀请新用户注册赠送积分活动 869370
科研通“疑难数据库(出版商)”最低求助积分说明 801435