A maximum power point tracking method for PV system with improved gravitational search algorithm

算法 引力搜索算法 电力系统 跟踪(教育) 控制理论(社会学)
作者
Li L,Guoqian Lin,Ming‐Lang Tseng,Kim Hua Tan,Ming K. Lim
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:65: 333-348 被引量:50
标识
DOI:10.1016/j.asoc.2018.01.030
摘要

Photovoltaic (PV) system has gradually become research focus in the field of renewable energy power generation, and the output efficiency of PV system is the major concern of researchers. There are obvious non-linear characteristics in the output of PV system, and it will be greatly affected by external environment. For achieving the maximum output power, PV system must operate under the guidance of maximum power point tracking (MPPT) methods The tracking time and accuracy of these methods need to be improved. Therefore, this study contributes to increase output efficiency of PV system by improving the tracking time and accuracy of existing MPPT methods Specifically, a MPPT method with improved gravitational search algorithm (IGSA-MPPT) was proposed. The dynamic weight was added in the change factor of the gravity constant and the related factors of memory and population information exchange were added into the updating formula of particle velocity. IGSA-MPPT not only reduced the tracking time, but also improved the tracking accuracy and mitigated the fluctuations of the reference voltage. Finally, simulation results are compared with the of MPPT methods with particle swarm Optimization (PSO-MPPT) and gravitational search algorithm (GSA-MPPT). The average tracking time of IGSA-MPPT was reduced by 0.023 s and 0.0116s, and the average increase rates of maximum power were increased by 1.7071% and 0.7001% compared with PSO-MPPT and GSA-MPPT. In the simulations of PV system under the varying irradiance and temperature, the tracking speed and tracking accuracy of IGSA-MPPT were higher than those of PSO-MPPT, GSA-MPPT, GWO-MPPT, ICO-MPPT, and FCGSA-MPPT. In summary, IGSA-MPPT has better performance in tracking time and accuracy than other comparison algorithms. It can improve output efficiency of PV system in practical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Ava应助纯情母蟑螂采纳,获得10
刚刚
旺旺完成签到 ,获得积分10
1秒前
1秒前
Lucas应助xiaohan采纳,获得10
1秒前
1秒前
982289172发布了新的文献求助10
2秒前
wtt123完成签到,获得积分10
2秒前
王金霞完成签到,获得积分10
2秒前
打打应助zhengzengpeng采纳,获得10
2秒前
111完成签到,获得积分10
2秒前
赘婿应助王泰一采纳,获得30
2秒前
八月中稿完成签到 ,获得积分10
3秒前
赘婿应助潇湘阁我爱吃采纳,获得10
3秒前
Gong发布了新的文献求助10
3秒前
Ava应助sube采纳,获得10
3秒前
Kurans发布了新的文献求助10
3秒前
wanxiqianxia完成签到,获得积分10
3秒前
4秒前
云纳完成签到,获得积分10
4秒前
笨笨的灵竹完成签到,获得积分20
4秒前
张磊发布了新的文献求助10
5秒前
聪明静柏完成签到 ,获得积分10
5秒前
小石头完成签到,获得积分0
5秒前
丘奇发布了新的文献求助10
5秒前
5秒前
79999完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
lemon完成签到,获得积分10
6秒前
6秒前
Arthur Zhu完成签到,获得积分10
6秒前
7秒前
热心荔枝完成签到,获得积分10
7秒前
危机的煎蛋完成签到 ,获得积分10
7秒前
liusen发布了新的文献求助10
8秒前
小羊完成签到,获得积分20
8秒前
戴士杰686完成签到,获得积分10
8秒前
可爱兔子完成签到 ,获得积分10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5483532
求助须知:如何正确求助?哪些是违规求助? 4584237
关于积分的说明 14395715
捐赠科研通 4513936
什么是DOI,文献DOI怎么找? 2473733
邀请新用户注册赠送积分活动 1459777
关于科研通互助平台的介绍 1433177