A maximum power point tracking method for PV system with improved gravitational search algorithm

算法 引力搜索算法 电力系统 跟踪(教育) 控制理论(社会学)
作者
Li L,Guoqian Lin,Ming‐Lang Tseng,Kim Hua Tan,Ming K. Lim
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:65: 333-348 被引量:50
标识
DOI:10.1016/j.asoc.2018.01.030
摘要

Photovoltaic (PV) system has gradually become research focus in the field of renewable energy power generation, and the output efficiency of PV system is the major concern of researchers. There are obvious non-linear characteristics in the output of PV system, and it will be greatly affected by external environment. For achieving the maximum output power, PV system must operate under the guidance of maximum power point tracking (MPPT) methods The tracking time and accuracy of these methods need to be improved. Therefore, this study contributes to increase output efficiency of PV system by improving the tracking time and accuracy of existing MPPT methods Specifically, a MPPT method with improved gravitational search algorithm (IGSA-MPPT) was proposed. The dynamic weight was added in the change factor of the gravity constant and the related factors of memory and population information exchange were added into the updating formula of particle velocity. IGSA-MPPT not only reduced the tracking time, but also improved the tracking accuracy and mitigated the fluctuations of the reference voltage. Finally, simulation results are compared with the of MPPT methods with particle swarm Optimization (PSO-MPPT) and gravitational search algorithm (GSA-MPPT). The average tracking time of IGSA-MPPT was reduced by 0.023 s and 0.0116s, and the average increase rates of maximum power were increased by 1.7071% and 0.7001% compared with PSO-MPPT and GSA-MPPT. In the simulations of PV system under the varying irradiance and temperature, the tracking speed and tracking accuracy of IGSA-MPPT were higher than those of PSO-MPPT, GSA-MPPT, GWO-MPPT, ICO-MPPT, and FCGSA-MPPT. In summary, IGSA-MPPT has better performance in tracking time and accuracy than other comparison algorithms. It can improve output efficiency of PV system in practical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
563998332发布了新的文献求助10
刚刚
花玥鹿完成签到,获得积分10
1秒前
神勇宛丝发布了新的文献求助30
1秒前
上官若男应助轻松的冰巧采纳,获得30
4秒前
ECT完成签到,获得积分10
5秒前
5秒前
Akim应助阿懒采纳,获得10
9秒前
DaLu完成签到,获得积分10
9秒前
pluto应助ywf采纳,获得50
10秒前
彭于晏应助小净儿采纳,获得10
10秒前
嗯哼应助louis采纳,获得10
10秒前
zyh发布了新的文献求助10
10秒前
雪满头应助难过的向卉采纳,获得10
11秒前
Hello应助hhj02采纳,获得10
11秒前
11秒前
12秒前
橘子汽水完成签到 ,获得积分10
13秒前
13秒前
13秒前
甜甜的难敌完成签到 ,获得积分20
15秒前
Claudia完成签到,获得积分10
16秒前
gcy发布了新的文献求助10
16秒前
17秒前
zyh完成签到,获得积分10
17秒前
今后应助半壶月色半边天采纳,获得10
18秒前
18秒前
调研昵称发布了新的文献求助10
18秒前
lv完成签到,获得积分20
18秒前
19秒前
19秒前
爱吃蒸蛋完成签到,获得积分10
19秒前
草莓大王发布了新的文献求助10
20秒前
lv发布了新的文献求助10
22秒前
友好若南完成签到,获得积分10
23秒前
you完成签到,获得积分10
24秒前
Claudia发布了新的文献求助10
24秒前
殴打阿达完成签到,获得积分10
25秒前
安静幻枫应助欣慰听南采纳,获得10
25秒前
乐乐应助563998332采纳,获得10
25秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3315469
求助须知:如何正确求助?哪些是违规求助? 2947293
关于积分的说明 8535810
捐赠科研通 2623498
什么是DOI,文献DOI怎么找? 1435099
科研通“疑难数据库(出版商)”最低求助积分说明 665497
邀请新用户注册赠送积分活动 651212