激子
载流子
去相
比克西顿
光谱学
材料科学
超短脉冲
钙钛矿(结构)
离解(化学)
化学物理
光电子学
分子物理学
物理
化学
凝聚态物理
光学
物理化学
激光器
结晶学
量子力学
作者
Ajay Jha,Hong-Guang Duan,Vandana Tiwari,Pabitra K. Nayak,Henry J. Snaith,Michael Thorwart,R. J. Dwayne Miller
出处
期刊:ACS Photonics
[American Chemical Society]
日期:2017-12-22
卷期号:5 (3): 852-860
被引量:58
标识
DOI:10.1021/acsphotonics.7b01025
摘要
The unprecedented success of hybrid organic–inorganic lead halide perovskites in photovoltaics motivates fundamental research to unravel the underlying microscopic mechanism for photoinduced charge generation. Recent studies suggest that most photoexcitations in perovskites are free charge carriers, although the contribution of the electron–hole pairs (i.e., excitons) at room temperature has been a matter of debate. We have employed ultrafast two-dimensional (2D) electronic spectroscopy to directly probe the elementary optical excitation of CH3NH3PbI3 thin films with ∼16 fs temporal resolution. We distinctly capture the ultrafast dissociation of excitons to the charge carriers at room temperature and at 180 K. Interestingly, we also observe that the coherent oscillations of the off-diagonal signals in the 2D electronic spectra live for ∼50 fs at room temperature. The entropy-driven dissociation of excitons to charge carriers happens within the electronic dephasing time scale and is favored by the low exciton binding energy, which we determine to be ∼12 meV at room temperature. This ultrafast dissociation of excitons to charge carriers can be one of the important contributions to the high efficiency of perovskite-based photovoltaics.
科研通智能强力驱动
Strongly Powered by AbleSci AI