The Tortoise and the Hare: Interactions between Reinforcement Learning and Working Memory

工作记忆 强化学习 钢筋 心理学 过程(计算) 杠杆(统计) 认知心理学 短时记忆 人工智能 计算机科学 认知 神经科学 社会心理学 操作系统
作者
Anne Collins
出处
期刊:Journal of Cognitive Neuroscience [MIT Press]
卷期号:30 (10): 1422-1432 被引量:77
标识
DOI:10.1162/jocn_a_01238
摘要

Learning to make rewarding choices in response to stimuli depends on a slow but steady process, reinforcement learning, and a fast and flexible, but capacity-limited process, working memory. Using both systems in parallel, with their contributions weighted based on performance, should allow us to leverage the best of each system: rapid early learning, supplemented by long-term robust acquisition. However, this assumes that using one process does not interfere with the other. We use computational modeling to investigate the interactions between the two processes in a behavioral experiment and show that working memory interferes with reinforcement learning. Previous research showed that neural representations of reward prediction errors, a key marker of reinforcement learning, were blunted when working memory was used for learning. We thus predicted that arbitrating in favor of working memory to learn faster in simple problems would weaken the reinforcement learning process. We tested this by measuring performance in a delayed testing phase where the use of working memory was impossible, and thus participant choices depended on reinforcement learning. Counterintuitively, but confirming our predictions, we observed that associations learned most easily were retained worse than associations learned slower: Using working memory to learn quickly came at the cost of long-term retention. Computational modeling confirmed that this could only be accounted for by working memory interference in reinforcement learning computations. These results further our understanding of how multiple systems contribute in parallel to human learning and may have important applications for education and computational psychiatry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
疯狂的迪子完成签到 ,获得积分10
2秒前
刚子完成签到 ,获得积分0
4秒前
椒盐皮皮虾完成签到 ,获得积分10
6秒前
nicheng完成签到 ,获得积分0
7秒前
慕青应助科研通管家采纳,获得10
14秒前
萧水白应助科研通管家采纳,获得50
15秒前
852应助科研通管家采纳,获得10
15秒前
林好人完成签到,获得积分10
15秒前
锦上添花完成签到 ,获得积分10
17秒前
晚晚完成签到,获得积分10
18秒前
Dreamer完成签到,获得积分10
22秒前
鲤鱼安青完成签到 ,获得积分10
23秒前
葱饼完成签到 ,获得积分10
23秒前
汉堡包应助Wang采纳,获得10
28秒前
dream完成签到 ,获得积分10
29秒前
跳跃完成签到,获得积分10
33秒前
空洛完成签到 ,获得积分10
33秒前
haochi完成签到,获得积分10
37秒前
Edward完成签到 ,获得积分10
39秒前
fusheng完成签到 ,获得积分10
39秒前
俏皮诺言完成签到,获得积分10
40秒前
40秒前
45秒前
浮生完成签到 ,获得积分10
45秒前
友好的牛排完成签到,获得积分10
47秒前
务实青筠完成签到 ,获得积分10
52秒前
领导范儿应助重要的天空采纳,获得10
52秒前
斯文的天奇完成签到 ,获得积分10
54秒前
稻子完成签到 ,获得积分10
55秒前
重要的天空完成签到,获得积分10
59秒前
饿哭了塞完成签到 ,获得积分10
1分钟前
XZZ完成签到 ,获得积分10
1分钟前
carrot完成签到 ,获得积分10
1分钟前
jjqqqj完成签到 ,获得积分10
1分钟前
聚甲烯吡络烷酮完成签到,获得积分10
1分钟前
可耐的思远完成签到 ,获得积分10
1分钟前
米里迷路完成签到 ,获得积分10
1分钟前
星光完成签到 ,获得积分10
1分钟前
依人如梦完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134035
求助须知:如何正确求助?哪些是违规求助? 2784845
关于积分的说明 7768884
捐赠科研通 2440259
什么是DOI,文献DOI怎么找? 1297353
科研通“疑难数据库(出版商)”最低求助积分说明 624928
版权声明 600792