Generalized Two-Stage Rank Regression Framework for Depression Score Prediction from Speech

回归 人工智能 机器学习 萧条(经济学) 计算机科学 排名(信息检索) 回归分析 心理学 统计 数学 经济 宏观经济学
作者
Nicholas Cummins,Vidhyasaharan Sethu,Julien Epps,James R. Williamson,Thomas F. Quatieri,Jarek Krajewski
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:11 (2): 272-283 被引量:29
标识
DOI:10.1109/taffc.2017.2766145
摘要

This paper introduces a novel speech-based depression score prediction paradigm, the 2-stage ranking prediction framework, and highlights the benefits it brings to depression prediction. Conventional regression approaches aim to discern a single functional relationship between speech features and depression scores, making an implicit assumption about the existence of a single fixed relationship between the features and scores. However, as the relationship between severity of depression and the clinical score may vary over the range of the assessment scale, this style of analysis may not be suited to depression prediction. The proposed framework on the other hand, imposes a series of partitions on the feature space, with each partition corresponding to a distinct predefined range of depression scores, and predicts the score based on measures of membership to each partition. This approach provides additional flexibility by allowing different rankings to be learnt for different depression scores, and relaxes assumptions made by conventional regression approaches. Results demonstrate the framework's suitability for depression score prediction: different 2-stage implementations, based on heterogeneous feature extraction and modelling approaches, produce state-of-the-art results on the AVEC-2013 dataset. It is also demonstrated that, unlike fusion of conventional regression systems, the fusion of two-stage systems consistently improves prediction performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
3秒前
ataybabdallah发布了新的文献求助30
3秒前
3秒前
难过笑寒发布了新的文献求助10
4秒前
整箱完成签到 ,获得积分10
5秒前
6秒前
6秒前
7秒前
聪慧的鹤轩完成签到,获得积分10
8秒前
Lucky完成签到,获得积分10
10秒前
10秒前
iiiid完成签到,获得积分10
10秒前
10秒前
鸽子发布了新的文献求助10
11秒前
无语的成仁完成签到,获得积分10
11秒前
12秒前
12秒前
小马发布了新的文献求助10
13秒前
小葱头发布了新的文献求助50
13秒前
JMD完成签到,获得积分20
15秒前
科研通AI2S应助left_right采纳,获得10
15秒前
星辰大海应助shinble采纳,获得30
15秒前
Owen应助迪迦奥特曼采纳,获得10
16秒前
所所应助prew采纳,获得10
17秒前
17秒前
传奇3应助科研通管家采纳,获得10
17秒前
ccm应助科研通管家采纳,获得10
17秒前
JamesPei应助科研通管家采纳,获得10
17秒前
shhoing应助科研通管家采纳,获得10
17秒前
shhoing应助科研通管家采纳,获得10
17秒前
大模型应助科研通管家采纳,获得10
17秒前
ding应助科研通管家采纳,获得10
18秒前
小二郎应助科研通管家采纳,获得10
18秒前
FashionBoy应助科研通管家采纳,获得10
18秒前
Owen应助科研通管家采纳,获得10
18秒前
隐形曼青应助科研通管家采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5537074
求助须知:如何正确求助?哪些是违规求助? 4624638
关于积分的说明 14592736
捐赠科研通 4565155
什么是DOI,文献DOI怎么找? 2502201
邀请新用户注册赠送积分活动 1480908
关于科研通互助平台的介绍 1452098