钝化
材料科学
表面改性
黑磷
图层(电子)
氯化铵
氯化物
磷
化学工程
超短脉冲
铵
激光器
无机化学
纳米技术
光电子学
有机化学
光学
化学
冶金
物理
工程类
作者
Qingliang Feng,Hongyan Liu,Meijie Zhu,Jing Shang,Dan Liu,Xiaoqi Cui,Diqin Shen,Liangzhi Kou,Dong Mao,Jianbang Zheng,Chun Li,Jin Zhang,Hua Xu,Jianlin Zhao
标识
DOI:10.1021/acsami.8b00556
摘要
Few-layer black phosphorus (BP) which exhibits excellent optical and electronic properties, has great potential applications in nanodevices. However, BP inevitably suffers from the rapid degradation in ambient air because of the high reactivity of P atoms with oxygen and water, which greatly hinders its wide applications. Herein, we demonstrate the electrostatic functionalization as an effective way to simultaneously enhance the stability and dispersity of aqueous phase exfoliated few-layer BP. The poly dimethyldiallyl ammonium chloride (PDDA) is selected to spontaneously and uniformly adsorb on the surface of few-layer BP via electrostatic interaction. The positive charge-center of the N atom of PDDA, which passivates the lone-pair electrons of P, plays a critical role in stabilizing the BP. Meanwhile, the PDDA could serve as hydrophilic ligands to improve the dispersity of exfoliated BP in water. The thinner PDDA-BP nanosheets can stabilize in both air and water even after 15 days of exposure. Finally, the uniform PDDA-BP–polymer film was used as a saturable absorber to realize passive mode-locking operations in a fiber laser, delivering a train of ultrafast pulses with the duration of 1.2 ps at 1557.8 nm. This work provides a new way to obtain highly stable few-layer BP, which shows great promise in ultrafast optics application.
科研通智能强力驱动
Strongly Powered by AbleSci AI