pLoc-mGpos: Incorporate Key Gene Ontology Information into General PseAAC for Predicting Subcellular Localization of Gram-Positive Bacterial Proteins

计算生物学 亚细胞定位 钥匙(锁) 基因本体论 水准点(测量) 计算机科学 伪氨基酸组成 生物 基因 人工智能 生物化学 基因表达 地理 计算机安全 大地测量学
作者
Xuan Xiao,Xiang Cheng,Shengchao Su,毛琦 Mao Qi,Kuo‐Chen Chou
出处
期刊:Natural Science [Scientific Research Publishing, Inc.]
卷期号:09 (09): 330-349 被引量:47
标识
DOI:10.4236/ns.2017.99032
摘要

The basic unit in life is cell.It contains many protein molecules located at its different organelles.The growth and reproduction of a cell as well as most of its other biological functions are performed via these proteins.But proteins in different organelles or subcellular locations have different functions.Facing the avalanche of protein sequences generated in the postgenomic age, we are challenged to develop high throughput tools for identifying the subcellular localization of proteins based on their sequence information alone.Although considerable efforts have been made in this regard, the problem is far apart from being solved yet.Most existing methods can be used to deal with single-location proteins only.Actually, proteins with multi-locations may have some special biological functions that are particularly important for drug targets.Using the ML-GKR (Multi-Label Gaussian Kernel Regression) method, we developed a new predictor called "pLoc-mGpos" by in-depth extracting the key information from GO (Gene Ontology) into the Chou's general PseAAC (Pseudo Amino Acid Composition) for predicting the subcellular localization of Gram-positive bacterial proteins with both single and multiple location sites.Rigorous cross-validation on a same stringent benchmark dataset indicated that the proposed pLoc-mGpos predictor is remarkably superior to "iLoc-Gpos", the state-of-the-art predictor for the same purpose.To maximize the convenience of most experimental scientists, a user-friendly web-server for the new powerful predictor has been established at
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谨慎的向南完成签到,获得积分10
刚刚
细腻的仙人掌完成签到,获得积分10
1秒前
zhaopeipei完成签到,获得积分10
2秒前
风趣的晓凡完成签到,获得积分10
2秒前
2秒前
乐乐乐完成签到 ,获得积分10
4秒前
peace完成签到,获得积分10
5秒前
幸福绿旋完成签到,获得积分10
5秒前
6秒前
香蕉觅云应助淡淡的安卉采纳,获得10
8秒前
Sukey完成签到,获得积分10
8秒前
黄三思完成签到,获得积分10
8秒前
几许星河皓月完成签到 ,获得积分10
9秒前
11秒前
Kossy.NG发布了新的文献求助10
11秒前
zz完成签到,获得积分10
11秒前
受伤访波完成签到,获得积分10
12秒前
651完成签到 ,获得积分10
13秒前
13秒前
现代CC完成签到 ,获得积分10
13秒前
积极璎完成签到,获得积分10
14秒前
zxj完成签到,获得积分10
15秒前
Yuan发布了新的文献求助10
16秒前
心灵美的电话完成签到 ,获得积分10
16秒前
capx完成签到,获得积分10
16秒前
19秒前
19秒前
20秒前
asdfg123完成签到,获得积分20
21秒前
Henry完成签到 ,获得积分10
22秒前
菜园我最菜完成签到 ,获得积分10
22秒前
coco完成签到 ,获得积分10
22秒前
自由海秋发布了新的文献求助10
23秒前
23秒前
张三完成签到,获得积分10
23秒前
叶不二发布了新的文献求助20
24秒前
Bressanone完成签到,获得积分10
25秒前
小二郎应助asdfg123采纳,获得10
26秒前
gude完成签到,获得积分10
26秒前
27秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5379532
求助须知:如何正确求助?哪些是违规求助? 4503848
关于积分的说明 14016757
捐赠科研通 4412672
什么是DOI,文献DOI怎么找? 2423885
邀请新用户注册赠送积分活动 1416773
关于科研通互助平台的介绍 1394345