pLoc-mGpos: Incorporate Key Gene Ontology Information into General PseAAC for Predicting Subcellular Localization of Gram-Positive Bacterial Proteins

计算生物学 亚细胞定位 钥匙(锁) 基因本体论 水准点(测量) 计算机科学 伪氨基酸组成 生物 基因 人工智能 生物化学 基因表达 地理 大地测量学 计算机安全
作者
Xuan Xiao,Xiang Cheng,Shengchao Su,毛琦 Mao Qi,Kuo‐Chen Chou
出处
期刊:Natural Science [Scientific Research Publishing, Inc.]
卷期号:09 (09): 330-349 被引量:47
标识
DOI:10.4236/ns.2017.99032
摘要

The basic unit in life is cell.It contains many protein molecules located at its different organelles.The growth and reproduction of a cell as well as most of its other biological functions are performed via these proteins.But proteins in different organelles or subcellular locations have different functions.Facing the avalanche of protein sequences generated in the postgenomic age, we are challenged to develop high throughput tools for identifying the subcellular localization of proteins based on their sequence information alone.Although considerable efforts have been made in this regard, the problem is far apart from being solved yet.Most existing methods can be used to deal with single-location proteins only.Actually, proteins with multi-locations may have some special biological functions that are particularly important for drug targets.Using the ML-GKR (Multi-Label Gaussian Kernel Regression) method, we developed a new predictor called "pLoc-mGpos" by in-depth extracting the key information from GO (Gene Ontology) into the Chou's general PseAAC (Pseudo Amino Acid Composition) for predicting the subcellular localization of Gram-positive bacterial proteins with both single and multiple location sites.Rigorous cross-validation on a same stringent benchmark dataset indicated that the proposed pLoc-mGpos predictor is remarkably superior to "iLoc-Gpos", the state-of-the-art predictor for the same purpose.To maximize the convenience of most experimental scientists, a user-friendly web-server for the new powerful predictor has been established at
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Sir.夏季风完成签到,获得积分10
刚刚
上官若男应助西子阳采纳,获得10
刚刚
Struggle完成签到 ,获得积分10
1秒前
谢佳冀发布了新的文献求助10
1秒前
锦哥发布了新的文献求助10
4秒前
4秒前
大雁完成签到 ,获得积分10
4秒前
化工渣渣完成签到,获得积分10
5秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
CipherSage应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得10
8秒前
8秒前
华仔应助科研通管家采纳,获得10
8秒前
9秒前
Akim应助ddd采纳,获得10
10秒前
11秒前
Focus_BG发布了新的文献求助10
11秒前
12秒前
锦哥完成签到,获得积分10
12秒前
把心放在肚里应助西子阳采纳,获得10
12秒前
hs完成签到,获得积分10
12秒前
huangxiaoniu完成签到,获得积分10
14秒前
zhangz发布了新的文献求助30
14秒前
14秒前
14秒前
XXGG发布了新的文献求助10
15秒前
领导范儿应助叶青文采纳,获得30
15秒前
applelpypies完成签到 ,获得积分0
17秒前
陈陈陈发布了新的文献求助30
17秒前
18秒前
陈陈完成签到,获得积分10
20秒前
科研通AI2S应助choyee采纳,获得10
20秒前
wanci应助123采纳,获得10
21秒前
23秒前
liiinzliiin应助无奈曼云采纳,获得10
23秒前
Corioreos发布了新的文献求助10
24秒前
大个应助文艺的凌波采纳,获得10
25秒前
乐观道之完成签到,获得积分10
25秒前
丘比特应助无奈曼云采纳,获得10
26秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461234
求助须知:如何正确求助?哪些是违规求助? 3054927
关于积分的说明 9045666
捐赠科研通 2744832
什么是DOI,文献DOI怎么找? 1505707
科研通“疑难数据库(出版商)”最低求助积分说明 695794
邀请新用户注册赠送积分活动 695233