Fully Decoupled Neural Network Learning Using Delayed Gradients.

计算机科学 人工神经网络 人工智能 深度学习 循环神经网络 激活函数 卷积神经网络 前馈神经网络 模式识别(心理学) 反向传播 梯度下降 机器学习 趋同(经济学) 前馈
作者
Huiping Zhuang,Yi Wang,Qinglai Liu,Zhiping Lin
出处
期刊:IEEE Transactions on Neural Networks [Institute of Electrical and Electronics Engineers]
卷期号:: 1-8 被引量:1
标识
DOI:10.1109/tnnls.2021.3069883
摘要

Training neural networks with backpropagation (BP) requires a sequential passing of activations and gradients. This has been recognized as the lockings (i.e., the forward, backward, and update lockings) among modules (each module contains a stack of layers) inherited from the BP. In this brief, we propose a fully decoupled training scheme using delayed gradients (FDG) to break all these lockings. The FDG splits a neural network into multiple modules and trains them independently and asynchronously using different workers (e.g., GPUs). We also introduce a gradient shrinking process to reduce the stale gradient effect caused by the delayed gradients. Our theoretical proofs show that the FDG can converge to critical points under certain conditions. Experiments are conducted by training deep convolutional neural networks to perform classification tasks on several benchmark data sets. These experiments show comparable or better results of our approach compared with the state-of-the-art methods in terms of generalization and acceleration. We also show that the FDG is able to train various networks, including extremely deep ones (e.g., ResNet-1202), in a decoupled fashion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
gaoyi12356完成签到,获得积分10
刚刚
wanci应助醉熏的飞薇采纳,获得10
刚刚
木木应助可可采纳,获得10
刚刚
烟花应助唠叨的以柳采纳,获得10
刚刚
谨慎初曼给谨慎初曼的求助进行了留言
1秒前
碳14发布了新的文献求助10
1秒前
2秒前
3秒前
xelloss发布了新的文献求助10
4秒前
丰富钢铁侠完成签到,获得积分20
4秒前
4秒前
外向宛菡发布了新的文献求助10
4秒前
4秒前
Phebe发布了新的文献求助10
5秒前
wy.he应助高兴的海亦采纳,获得10
5秒前
研友_Y59785应助高兴的海亦采纳,获得10
5秒前
ZGZ123应助高兴的海亦采纳,获得10
5秒前
5秒前
英姑应助高兴的海亦采纳,获得10
5秒前
5秒前
所所应助高兴的海亦采纳,获得10
5秒前
ED应助高兴的海亦采纳,获得10
5秒前
小二郎应助高兴的海亦采纳,获得30
5秒前
海东来应助高兴的海亦采纳,获得30
5秒前
5秒前
卡卡西应助高兴的海亦采纳,获得30
6秒前
海东来应助高兴的海亦采纳,获得30
6秒前
MchemG应助lf采纳,获得10
6秒前
satan9完成签到,获得积分10
7秒前
7秒前
nz关闭了nz文献求助
7秒前
7秒前
7秒前
生椰拿铁发布了新的文献求助10
8秒前
8秒前
天天快乐应助行止采纳,获得10
8秒前
森ok完成签到,获得积分20
8秒前
熬夜大王发布了新的文献求助10
9秒前
宁为玉发布了新的文献求助10
9秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978415
求助须知:如何正确求助?哪些是违规求助? 3522416
关于积分的说明 11213317
捐赠科研通 3259798
什么是DOI,文献DOI怎么找? 1799678
邀请新用户注册赠送积分活动 878563
科研通“疑难数据库(出版商)”最低求助积分说明 806987