Development and validation of an unfolded protein response-related gene signature to predict overall survival in HNSCC.

比例危险模型 肿瘤科 头颈部鳞状细胞癌 医学 基因签名 Lasso(编程语言) 内科学 生存分析 基因表达谱 基因表达 基因 癌症 生物信息学 头颈部癌 生物 遗传学 万维网 计算机科学
作者
Jun Chen,Bei Zhang
出处
期刊:Journal of Clinical Oncology [American Society of Clinical Oncology]
卷期号:39 (15_suppl): e18033-e18033
标识
DOI:10.1200/jco.2021.39.15_suppl.e18033
摘要

e18033 Background: Genomic expression profiles have enabled the classification of head and neck squamous cell carcinoma (HNSCC) into molecular sub-types and provide prognostic information, which have implications for the personalized treatment of HNSCC beyond clinical and pathological features. Methods: Gene-expression profiling was identified in TCGA- HNSCC (n = 492) and validated with the Gene Expression Ominibus (GEO) dataset(n = 270) for which RNA sequencing data and clinical covariates were available. A single-sample gene set enrichment analysis (ssGSEA) algorithm were used to quantified the levels of various hallmarks of cancer. And LASSO Cox regression model was used to screen robust prognostic biomarkers to identify the best set of survival-associated gene signatures in HNSCC. Statistical analyses were performed using R version 3.4.4. Results: We identified unfolded protein response as the primary risk factor for survival(cox coefficient = 17.4 [8.4-26.3], P < 0.001)among various hallmarks of cancer in TCGA- HNSCC. And unfolded protein response ssGESA scores were significantly elevated in patients who died during follow up (P = 0.009). Kaplan-Meier analysis showed that patients with low ssGSEA scores of unfolded protein response exhibited better OS (HR = 0.69, P = 0.008). And we established an unfolded protein response-related gene signature based on lasso cox. We then apply the unfolded protein response -related gene signature to classify patients into the high risk group and the low risk group with the cutoff of 0.18. Adjusted for stage,age,gender, our signature was an independent risk factor for overall survival in TCGA cohorts (HR = 0.39 [0.28-0.53],P = < 0.001). In external independent cohorts, similar results were observed. In the validation cohort GEO65858, the patients with high unfolded protein response score showed longer survival (HR = 0.62 [0.38-1.0], P = 0.049). And adjusted for stage,age,HPV state, the multivariate cox regression analysis showed that unfolded protein response-related gene signature exhibited an independent risk prediction for overall survival in 270 patients with HNSCC (HR = 0.57 [0.35-0.94], P = 0.026). Conclusions: By analyzing the gene-expression data with bioinformation approach, we developed and validated a risk prediction model with unfolded protein response -related expression scores in HNSCC, which have the potential to identify patients who could have better overall survival.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
LX发布了新的文献求助10
1秒前
1秒前
2秒前
junyang完成签到,获得积分10
2秒前
tian发布了新的文献求助10
2秒前
Lily完成签到,获得积分10
2秒前
LHS应助熊风采纳,获得10
3秒前
for_abSCI完成签到,获得积分0
3秒前
3秒前
桑灿垚完成签到 ,获得积分10
3秒前
3秒前
夕荀发布了新的文献求助10
3秒前
于鹏完成签到,获得积分10
3秒前
英勇星月完成签到 ,获得积分10
4秒前
李墩墩完成签到,获得积分20
4秒前
xiaoleeyu完成签到,获得积分10
4秒前
4秒前
Clarkli关注了科研通微信公众号
5秒前
霅霅完成签到,获得积分10
5秒前
吊袜带完成签到,获得积分10
5秒前
公冶菲鹰完成签到,获得积分10
6秒前
6秒前
qiuxiali123完成签到,获得积分10
6秒前
英俊的铭应助su采纳,获得10
7秒前
7秒前
wwsss完成签到,获得积分10
7秒前
Melody完成签到,获得积分10
7秒前
Ava应助奋斗夏烟采纳,获得10
7秒前
7秒前
秦艽完成签到,获得积分10
7秒前
咕咚发布了新的文献求助10
8秒前
8秒前
8秒前
成就向雁完成签到,获得积分10
8秒前
weizheng发布了新的文献求助10
8秒前
8秒前
wcx完成签到,获得积分10
8秒前
关键词完成签到,获得积分10
9秒前
Xide完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573926
求助须知:如何正确求助?哪些是违规求助? 4660203
关于积分的说明 14728382
捐赠科研通 4599980
什么是DOI,文献DOI怎么找? 2524638
邀请新用户注册赠送积分活动 1494989
关于科研通互助平台的介绍 1465005