Development and validation of an unfolded protein response-related gene signature to predict overall survival in HNSCC.

比例危险模型 肿瘤科 头颈部鳞状细胞癌 医学 基因签名 Lasso(编程语言) 内科学 生存分析 基因表达谱 基因表达 基因 癌症 生物信息学 头颈部癌 生物 遗传学 万维网 计算机科学
作者
Jun Chen,Bei Zhang
出处
期刊:Journal of Clinical Oncology [American Society of Clinical Oncology]
卷期号:39 (15_suppl): e18033-e18033
标识
DOI:10.1200/jco.2021.39.15_suppl.e18033
摘要

e18033 Background: Genomic expression profiles have enabled the classification of head and neck squamous cell carcinoma (HNSCC) into molecular sub-types and provide prognostic information, which have implications for the personalized treatment of HNSCC beyond clinical and pathological features. Methods: Gene-expression profiling was identified in TCGA- HNSCC (n = 492) and validated with the Gene Expression Ominibus (GEO) dataset(n = 270) for which RNA sequencing data and clinical covariates were available. A single-sample gene set enrichment analysis (ssGSEA) algorithm were used to quantified the levels of various hallmarks of cancer. And LASSO Cox regression model was used to screen robust prognostic biomarkers to identify the best set of survival-associated gene signatures in HNSCC. Statistical analyses were performed using R version 3.4.4. Results: We identified unfolded protein response as the primary risk factor for survival(cox coefficient = 17.4 [8.4-26.3], P < 0.001)among various hallmarks of cancer in TCGA- HNSCC. And unfolded protein response ssGESA scores were significantly elevated in patients who died during follow up (P = 0.009). Kaplan-Meier analysis showed that patients with low ssGSEA scores of unfolded protein response exhibited better OS (HR = 0.69, P = 0.008). And we established an unfolded protein response-related gene signature based on lasso cox. We then apply the unfolded protein response -related gene signature to classify patients into the high risk group and the low risk group with the cutoff of 0.18. Adjusted for stage,age,gender, our signature was an independent risk factor for overall survival in TCGA cohorts (HR = 0.39 [0.28-0.53],P = < 0.001). In external independent cohorts, similar results were observed. In the validation cohort GEO65858, the patients with high unfolded protein response score showed longer survival (HR = 0.62 [0.38-1.0], P = 0.049). And adjusted for stage,age,HPV state, the multivariate cox regression analysis showed that unfolded protein response-related gene signature exhibited an independent risk prediction for overall survival in 270 patients with HNSCC (HR = 0.57 [0.35-0.94], P = 0.026). Conclusions: By analyzing the gene-expression data with bioinformation approach, we developed and validated a risk prediction model with unfolded protein response -related expression scores in HNSCC, which have the potential to identify patients who could have better overall survival.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
简单绯发布了新的文献求助10
1秒前
1秒前
1秒前
量子星尘发布了新的文献求助30
1秒前
桐桐应助聪慧紫蓝采纳,获得10
1秒前
tang应助zz采纳,获得10
1秒前
悦耳难摧发布了新的文献求助10
2秒前
nuo发布了新的文献求助20
2秒前
lilili完成签到,获得积分10
2秒前
快快快快快快快快快完成签到 ,获得积分10
3秒前
zky关闭了zky文献求助
3秒前
amazeman111发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
Christina发布了新的文献求助30
4秒前
4秒前
lilili发布了新的文献求助10
5秒前
5秒前
xingxing发布了新的文献求助10
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
www发布了新的文献求助10
6秒前
香蕉觅云应助激昂的幻梦采纳,获得10
6秒前
6秒前
willen完成签到,获得积分10
7秒前
大个应助小皮艇采纳,获得10
7秒前
晒晒发布了新的文献求助10
7秒前
活着完成签到 ,获得积分10
8秒前
8秒前
李健的小迷弟应助帅玉玉采纳,获得10
8秒前
xxh完成签到,获得积分10
8秒前
9秒前
9秒前
平常丝发布了新的文献求助10
9秒前
vz7发布了新的文献求助10
10秒前
qbxiaojie完成签到,获得积分10
10秒前
思源应助勤恳万宝路采纳,获得10
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728317
求助须知:如何正确求助?哪些是违规求助? 5312368
关于积分的说明 15313794
捐赠科研通 4875546
什么是DOI,文献DOI怎么找? 2618882
邀请新用户注册赠送积分活动 1568431
关于科研通互助平台的介绍 1525095